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ABSTRACT
�e design of cryptographically strong Substitution Boxes (S-boxes)

is an interesting problem from both a cryptographic perspective

as well as the combinatorial optimization one. Here we introduce

the concept of evolving cellular automata rules that can be then

translated into S-boxes. With it, we are able to �nd optimal S-boxes

for sizes from 4 × 4 up to 7 × 7. As far as we know, this is the �rst

time a heuristic approach is able to �nd optimal S-boxes for sizes

larger than 4.
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1 INTRODUCTION
In the process of designing block ciphers, one well explored direc-

tion is to build the so-called Substitution-Permutation Network

(SPN) cipher. Such ciphers usually consist of an XOR operation

with the key/subkeys, a linear layer, and a substitution layer [3]. A

standard way to build the substitution layer is to use one or more

Substitution Boxes (S-boxes) where a number of properties need

to be satis�ed for an S-box to be useful in practice. An S-box, or

(n,m) function, is a mapping from n inputs intom outputs.

From the cryptographic properties perspective, the bare mini-

mum one would need to consider when designing S-boxes with the
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same number of inputs and outputs (as we consider in this paper)

is for them to be bijective, with high nonlinearity, and low di�eren-

tial uniformity. When utilizing heuristics in the design of S-boxes,

a common approach is to use the permutation encoding since it

ensures the bijectivity property. However, already for the size 5× 5

heuristics are not able to reach the optimal values of nonlinearity

and di�erential uniformity and therefore algebraic constructions

are the common method of choice [5]. However, there are sev-

eral ciphers that use S-boxes not directly obtained by algebraic

constructions or heuristics, but where the S-boxes are actually cel-

lular automata (CA). �e best known example is the Keccak sponge

construction that is now part of the SHA-3 standard [1].

In this paper, we focus on the investigation of CA rules that are

able to produce S-boxes with optimal cryptographic properties. In

particular, we use Genetic Programming (GP) to evolve CA local

rules in the form of Boolean functions, by viewing the correspond-

ing CA as S-boxes. With our approach we are able to produce

large quantities of S-boxes with optimal cryptographic properties,

dependent on the chosen optimization criteria.

2 S-BOXES AND CELLULAR AUTOMATA
Let n,m be positive integers, i.e., n,m ∈ N+. �e set of all n-tuples

of elements in the �eld F2 is denoted as Fn
2

, where F2 is the Galois

�eld with two elements. �e inner product of two vectors a and b
from Fn

2
equals a · b =

⊕n
i=1

aibi where “

⊕
” represents addition

modulo two. An (n,m)-function is any mapping F from Fn
2

to Fm
2

.

For any set S , we denote S\{0} by S∗.
An (n,m)-function F is balanced if it takes every value of Fm

2
the

same number 2
n−m

of times.

�e nonlinearity NF of an (n,m)-function F equals the minimum

nonlinearity of all its component functionsv ·F , wherev ∈ Fm∗
2

[2]:

NF = 2
n−1 − 1

2

max

a ∈ Fn
2

v ∈ Fm∗
2

|WF (a,v)|. (1)

Here, WF (a,v) is the Walsh-Hadamard transform of an (n,m)-
function F, de�ned as:

WF (a,v) =
∑
x ∈Fn

2

(−1)v ·F (x )⊕a ·x , a,v ∈ Fm
2
. (2)

Let F : Fn
2
→ Fm

2
, a ∈ Fn

2
and b ∈ Fm

2
. We denote:

DF (a,b) =
{
x ∈ Fn

2
: F (x) + F (x + a) = b

}
. (3)
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�e entry at the position (a,b) corresponds to the cardinality of

the delta di�erence table DF (a,b). �e di�erential uniformity δF is

then de�ned as [4]:

δF = max

a,0,b
DF (a,b). (4)

Cellular automata (CA) are a parallel computational model which

can be represented as a regular grid of cells, such that each cell

synchronously updates its state according to a local rule, which

depends on a speci�c number of neighboring cells. In this paper

we consider a CA model where the cells are arranged on a �nite

periodic one-dimensional array and are described by a binary state,

0 or 1.

Formally, let m,n ∈ N with m ≥ n, and let f : Fn
2
→ F2 be

a Boolean function. A cellular automaton (CA) of length m with

local rule f and periodic boundary condition is a vectorial Boolean

function F : Fm
2
→ Fm

2
de�ned for all x = (x1, · · · ,xm ) ∈ Fm

2
as:

F (x1, · · · ,xm ) = (f (x1,x2, · · · ,xn ), · · · , f (xm ,x1, · · · ,xn−1)) .
(5)

In the rest of the paper we assume m = n, and we identify F (the

CA) with an S-box.

3 GP APPROACH AND RESULTS
We use GP to evolve Boolean functions of n variables, in the form of

trees, which are used as CA local rules. In this process, we assume

that the state of a CA is represented as a periodic one-dimensional

binary array of size n. �e elements of the binary array are used

as GP terminals, where the terminal c0 denotes the value that is

being updated. �e terminals c1, . . . , cn−1 denote the cells to the

right of the current cell. In our experiments, the neighborhood of

a cell is formed by the cell itself and the n − 1 cells to its right, so

each value in the current state can be used in a local update rule. A

candidate Boolean function obtained with GP is evaluated in the

following manner: all the possible 2
n

input states are considered,

and for each state the same rule is applied in parallel to each of the

bits to determine the next state. �e obtained global rule represents

a candidate S-box that is then evaluated according to the desired

cryptographic criteria.

We use the following function set: NOT, which inverts its argu-

ment, XOR, NAND, NOR, each of which takes two input arguments.

Additionally, we use the function IF, which takes three arguments

and returns the second one if the �rst one evaluates to true , and

the third one otherwise. In the evolution process, GP uses a 3-

tournament selection and mutation with a probability of 0.5. �e

variation operators are simple tree crossover, uniform crossover,

size fair, one-point, and context preserving crossover [6] (selected at

random) and subtree mutation. �e initial population is created at

random with ramped half-and-half initialization; every experiment

is repeated 50 times and the population size equals 2 000.

In the �tness function �rst the balancedness is veri�ed, and if an

S-box is balanced, we give it a value of zero, otherwise the value

equals -1; this is denoted with the label BAL. If the S-box is balanced,

we calculate the nonlinearity and di�erential uniformity (which is

subtracted from the value 2
n

, since we aim to minimize the value

of that property) and maximize the resulting value:

f itness = BAL + ∆BAL,0(NF + (2n − δF )). (6)

Table 1: Statistical results and comparison.

S-box size T max GP Ours Related work

Max Avg SD NF δF NF δF
4 × 4 16 16 16 0 4 4 4 4

5 × 5 42 42 41.73 1.01 12 2 10 4

6 × 6 86 84 80.47 4.72 24 4 22 6

7 × 7 182 182 155.07 8.86 56 2 48 6

8 × 8 364 318 281.87 13.86 82 20 104 8

∆BAL,0 represents the Kronecker delta function that equals one

when the function is balanced (i.e., BAL = 0) and zero otherwise.

In Table 1 we give the statistical results and compare the best

values obtained here with the state-of-the-art results obtained with

EC [5], where be�er values are in bold style. Statistical results are

averaged over the best obtained values for each run, and column

T max denotes the theoretical maximal value of the �tness (or one

that would correspond to the assumed theoretical maximal value).

For the 4 × 4 size both our technique and related work can easily

reach optimal values. However, for sizes 5×5 till 7×7 our approach

yielded signi�cantly improved results. On the other hand, for the

8 × 8 size, related work managed to obtain be�er nonlinearity

and di�erential uniformity. Still, we emphasize that even those

results are far from the best one where nonlinearity equals 112 and

di�erential uniformity equals 4 (note that it is only assumed but

not proven that the maximal nonlinearity equals 112).

4 CONCLUSIONS
Our approach shows great potential and marks the �rst time that

heuristic techniques are able to �nd optimal S-boxes for sizes larger

than 4 × 4. Moreover, our approach transforms a problem that

has been up to now of extreme di�culty into a simpler problem

for certain S-box sizes. Naturally, since not all S-boxes can be

represented as a CA, our technique cannot be used to design all

optimal S-boxes of the corresponding size. However, we believe

that the corpus of obtainable functions is still large enough to give

a su�cient diversity for future block cipher designs.
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