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ABSTRACT
�e aim of this paper is to �nd cellular automata (CA) rules that are

used to describe S-boxes with good cryptographic properties and

low implementation cost. Up to now, CA rules have been used in

several ciphers to de�ne an S-box, but in all those ciphers, the same

CA rule is used. �is CA rule is best known as the one de�ning

the Keccak χ transformation. Since there exists no straightforward

method for constructing CA rules that de�ne S-boxes with good

cryptographic/implementation properties, we use a special kind of

heuristics for that – Genetic Programming (GP). Although it is not

possible to theoretically prove the e�ciency of such a method, our

experimental results show that GP is able to �nd a large number

of CA rules that de�ne good S-boxes in a relatively easy way. We

focus on the 4 × 4 and 5 × 5 sizes and we implement the S-boxes in

hardware to examine implementation properties like latency, area,

and power. Particularly interesting is the internal encoding of the

solutions in the considered heuristics using combinatorial circuits;

this makes it easy to approximate S-box implementation properties

like latency and area a priori.

KEYWORDS
Lightweight cryptography S-boxes Cellular automata Ge-

netic programming Implementation
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1 INTRODUCTION
When studying the design of block ciphers, a common concept is

to adhere to Shannon’s confusion and di�usion principles [24]. To

provide confusion, one usually uses Substitution boxes (S-boxes).

In most cases, those S-boxes are the only nonlinear part of the

cipher and they operate on parts of the state. Smaller S-boxes,

e.g. those with size 4 × 4, are most o�en employed in lightweight

cryptographic ciphers such as PRESENT [5]. On the other hand,

8 × 8 S-boxes are found in the AES cipher [16], and subsequently

in a number of ciphers that draw inspiration from AES.

Naturally, there exists a clear trade-o� between the choices of

S-box sizes and properties. S-boxes based on a �nite �eld inversion

will have the smallest possible di�erential probability, the largest

possible algebraic degree, and the largest possible nonlinearity (or

what is believed to be the largest possible nonlinearity in the case

of a bijective 8 × 8 S-box). �ose properties ensure that the cipher

can be secure with a relatively small number of rounds and con-

sequently have good performance However, an S-box of such a

size can be troublesome to implement in constrained environments

and consequently one uses either smaller optimal S-boxes, large

S-boxes with suboptimal cryptographic properties but small imple-

mentation cost or constructions of larger S-boxes through smaller

S-boxes.

To construct any of the aforementioned S-boxes, algebraic con-

structions with possible additional a�ne transformations are usu-

ally employed to change the representation of an S-box without

a�ecting its cryptographic properties. �is concept can be levied

for the 4 × 4 size since there it is also possible to use an exhaus-

tive search in order to obtain all optimal S-boxes. Besides that,

there have been numerous papers advocating the use of heuristic

techniques. Nevertheless, the results are mostly suboptimal with

regards to cryptographic properties and they do not describe a

proper use case [8, 12, 21]. Finally, there are several ciphers that

use cellular automata (CA) rules to describe the S-box. �e best

known example is the Keccak sponge construction [4] that is now

the SHA-3 standard. �ere, the authors use CA rules a�ecting

only two neighborhood positions for each bit, which results in an

extremely lightweight de�nition of the S-box and a small imple-

mentation cost. However, that S-box has suboptimal cryptographic

properties (like nonlinearity and di�erential uniformity), which
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results in a cipher with more rounds than with optimal S-boxes. As

far as the authors know, all the other ciphers using CA rules for the

S-box de�nition actually use the same rule. �is is the case in the

Panama [13], RadioGatún [3], Subterranean [11], and 3Way [15]

ciphers. It is also an interesting consideration (although maybe

more in the philosophical domain) whether those ciphers (exclud-

ing 3Way) actually use S-boxes, since every output bit depends

only on three input bits for the considered CA rule. Taking this

into account, the Panama cipher would have a 17-bit S-box and

Subterranean would have a 257-bit S-box. We note that since the

same local rule is used in di�erent S-box sizes, the cryptographic

properties actually degrade with the increase of the S-box size. For

instance, when used in 3 × 3 S-boxes, both the nonlinearity and

di�erential uniformity equal 2, which is optimal, but if used in 7× 7

S-boxes, both of those properties would have a value equal to 32,

which is far from optimal.

In this paper, we focus on the investigation of cellular automata

rules that are able to produce optimal S-boxes with a low imple-

mentation cost. In order to achieve that, we employ a heuristic

technique known as Genetic Programming (GP) to evolve CA rules

– de�nitions of S-boxes. Genetic Programming evolves tree struc-

tures that consist of logical operations and therefore o�er a natural

mapping to combinatorial circuits which makes it possible to esti-

mate the area of the generated S-boxes. �anks to the maximum

tree depth parameter of GP, we are also able to limit the latency of

the S-boxes. Finally, to evaluate the power consumption, we use a

posteriori setup where we batch large numbers of CA rules to �nd

which one coincides with the smallest power consumption.

In our analysis, we focus on S-boxes of sizes 4 × 4 and 5 × 5.

While larger S-boxes with optimal cryptographic properties can

be also designed by using our methodology, the initial obtained

results show that such CA rules are usually too large to be of

real interest when implemented in hardware. We are aware that

one could argue that there are already enough knowledge and

tools to design smaller S-boxes, but as far as we know, there is

nothing more than the Keccak rule when considering CA rules for

the construction of S-boxes. We emphasize that the way the CA

rule is implemented, i.e., one rule for each bit of the input, make

CA rules a very interesting technique but one that leads to large

implementations for larger sizes. Indeed, if a single rule needs only

5 GE, the overhead for 5 × 5 S-boxes is 25 GE.

Additionally, we remark that the number of S-boxes of a certain

size de�ned by CA is much smaller than the total number of S-boxes

of that size, since a CA S-box is described just by the Boolean func-

tion of its local rule. �is means that there are 2
2
n

CA S-boxes

of size n × n, a space which could be exhaustively searched up to

n = 5. However, since we use tree encoding to measure the imple-

mentation cost (see Sec. 5), the number of CA rules representations

is much larger than the number of S-boxes and thus impossible to

exhaustively visit even for smaller sizes, which motivates the use

of heuristic techniques such as GP.

2 CRYPTOGRAPHIC PROPERTIES OF
S-BOXES

Letn,m be positive integers, i.e.,n,m ∈ N+. �e set of alln-tuples of

elements in the �eld F2 is denoted as Fn
2

, where F2 is the Galois �eld

with two elements. �e inner product of two vectors a and b equals

a · b =
⊕n

i=1
aibi and “

⊕
” represents addition modulo two. An

(n,m)-function is any mapping F from Fn
2

to Fm
2

. A (n,m)-function

F can be de�ned as a vector F = (f1, · · · , fm ), where the Boolean

functions fi : Fn
2
→ F2 for i ∈ {1, · · · ,m} are called the coordinate

functions of F. �e component functions of an (n,m)-function F
are all the linear combinations of the coordinate functions with

non all-zero coe�cients. �e following results are well-known in

the theory of Boolean functions and S-boxes and can be found for

instance in [9, 10, 18, 19].

�e Walsh-Hadamard transform of an (n,m)-function F equals:

WF (a,v) =
∑
x ∈Fm

2

(−1)v ·F (x )⊕a ·x , a,v ∈ Fm
2
. (1)

An (n,m)-function F is balanced (BAL) if it takes every value of

Fm
2

the same number 2
n−m

of times.

�e nonlinearity NF of an (n,m)-function F equals the minimum

nonlinearity of all its component functionsv ·F , wherev ∈ Fm
2
\{0}:

NF = 2
n−1 − 1

2

max

a ∈ Fn
2

v ∈ Fm∗
2

|WF (a,v)|. (2)

�e nonlinearity of an S-box should be as high as possible in order

to avoid linear a�acks. �e maximal nonlinearity for any (n,n)
function F is bounded above by:

NF ≤ 2
n−1 − 2

n−1

2 . (3)

Let F be a function from Fn
2

into Fn
2

and a,b ∈ Fn
2

. We denote:

D(a,b) = |
{
x ∈ Fn

2
: F (x + a) + F (x) = b

}
|. (4)

�e entry at the position (a,b) corresponds to the cardinality of

D(a,b) and is denoted as δ (a,b). �e di�erential uniformity δF is

then de�ned as:

δF = max

a,0,b
δ (a,b). (5)

In order to withstand di�erential a�acks, the di�erential uniformity

of an S-box needs to be as low as possible.

�e algebraic degreedeдF of (n,m)-function F is the maximum al-

gebraic degree of all component functions [10]. As a cryptographic

criterion, the degree of an S-box should be as high as possible in

order to thwart higher-order di�erential a�acks.
�e branch number bF of a function F is de�ned as [16]:

bF = min

a,b,a
(HW (a ⊕ b) + HW (F (a) ⊕ F (b))). (6)

3 CELLULAR AUTOMATA
A cellular automaton (CA) is a parallel computational model that has

been used to simulate and analyze a wide variety of discrete complex

systems in di�erent application domains. A CA is characterized by

a la�ice of cells. During a single time step, each cell in the la�ice

synchronously updates its state according to a local rule, which is

applied to the neighborhood of the cell.

For the purposes of our work, we consider only the case in

which each cell is described by a binary state, 0 or 1, leading to

the following de�nition: An in�nite cellular automaton (CA) is a

quadrupleA = 〈c,δ ,ω, f 〉 where c is a bi-in�nite array of cells, each

of which takes a value in F2, δ ∈ N is the diameter, ω ∈ Z is the

o�set and f : Fδ
2
→ F2 is the local rule. In particular, the next state
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of each cell ci with i ∈ Z is determined by applying in parallel the

rule f to the neighborhood (ci−ω , · · · , ci−ω+δ−1
).

Notice that, since the local rule f : Fδ
2
→ F2 is a Boolean func-

tion, it can be represented by a truth table of 2
δ

bits. �e global rule
F : FZ

2
→ FZ

2
of an in�nite CA 〈c,δ ,ω, f 〉 is the function mapping

the current state of the bi-in�nite array c to its next con�guration.

An important property characterizing the global rules of CA is their

shi� invariance. Denoting by σ the function which shi�s all values

in a bi-in�nite con�guration one place to the le�, any CA global

rule commutes with σ , i.e. F (σ (x)) = σ (F (x) for all x ∈ FZ
2

.

For practical applications, CA can obviously be implemented

using only �nite arrays, which leads to the problem of updating the

cells at the boundaries. One of the most commonly adopted poli-

cies are periodic boundary conditions, where the �nite cells array is

viewed as a ring with the last cell preceding the �rst one. In this case,

we denote a �nite CA by a quintuple 〈c,n,δ ,ω, f 〉, where n ∈ N in-

dicates the length of the cellular array. �e global rule F : Fn
2
→ Fn

2

is thus de�ned for all possible values x ∈ FZ
2

of the state array

c as F (x) = (f (x−ω , · · · ,xδ−ω ), · · · , f (xn−1−ω , · · · ,xn−ω+δ−2
))

where all indices are computed modulo n. As a consequence, the

global rule of a �nite CA is a vectorial Boolean function of n inputs

and n outputs, where for all i ∈ {0, · · · ,n − 1} the i-th coordinate

function fi : Fn
2
→ F2 corresponds to the local rule f applied

to the neighborhood of cell ci . As an example, consider the rule

f (x1,x2,x3) = x1 ⊕ x2 ⊕ x3 and the �nite con�guration c = 01001.

�e application of the global rule F : F5

2
→ F5

2
to c using periodic

boundary conditions changes the CA state to F (c) = 01111.

A �nite CA with periodic boundary conditions corresponds to an

in�nite CA with the same local rule, but restricted only to periodic
con�gurations, i.e. con�gurations x ∈ FZ

2
such that xi+h = xi for a

certain h and for all i ∈ Z.

We conclude this section by mentioning the class of reversible
CA (RCA), which is particularly interesting for cryptographic ap-

plications. Formally, an in�nite CA A = 〈c,δ ,ω, f 〉 is reversible if

its global rule F : FZ
2
→ FZ

2
is bijective and the inverse G = F−1

is again the global rule of an in�nite CA. In practice, as Richard-

son [23] proved, the reversibility of an in�nite CA is characterized

just by the bijectivity of its global rule. Since an in�nite RCA

A = 〈c,δ ,ω, f 〉 is clearly reversible over the set of periodic con�g-

urations, it follows that the global rule of the corresponding �nite

CA A′ = 〈c,n,δ ,ω, f 〉 is a bijective S-box. �e converse is however

not true: a local rule f : Fδ
2
→ F2 may give rise to a �nite CA

whose global rule is invertible only for certain array lengths, but

the associated in�nite CA is not reversible.

4 RELATEDWORK
�e �rst block cipher based on cellular automata was proposed by

Gutowitz [17]. �e design was based on the adoption of permutive
rules for the di�usion phase, in particular, where the value of the

le�most or rightmost variable is XORed with a function of the

remaining variables, and block reversible CA for the confusion phase,

where a permutation is applied on smaller blocks of the cipher state

which are then shi�ed in the next time steps.

Gutowitz’s design focused on the iterated behaviour of the CA,

where the global rule is applied for several time steps in order to

generate the ciphertext. Another perspective is to consider the

S-box corresponding only to one CA iteration. �is approach has

been mainly investigated with respect to the class of complementing
landscapes cellular automata (CLCA), where the local rule comple-

ments the state of the current cell if the values of the surrounding

cells belong to a speci�c pa�ern. In [14], CLCA for block cipher

design were studied distinguishing between locally and globally
invertible rules. In particular, all locally invertible CLCA turn out

to be involutions, while globally invertible CLCA are invertible

only over certain sets of periodic con�gurations. In particular, the

transformation χ used in Keccak [4] is invertible only over con�g-

urations of odd lengths.

From the evolutionary computation (EC) perspective, we men-

tion only some characteristic approaches that are all using permu-

tation encoding. Clark et al. used the principles from the evolution-

ary design of Boolean functions to evolve S-boxes with the desired

cryptographic properties [12]. �ey used simulated annealing (SA)

coupled with the hill climbing algorithm to evolve bijective S-boxes

with high nonlinearity. Burne� et al. used a heuristic method to

generate MARS-like S-boxes [8]. With their approach, they were

able to generate a number of S-boxes of appropriate sizes that

satisfy all the requirements placed on a MARS S-box. Moreover,

with a combination of several techniques, they were even able to

�nd S-boxes with improved nonlinearity. Picek et al. used sev-

eral evolutionary algorithms to evolve S-boxes and discussed how

to obtain permutation-based encoding with those algorithms [21].

Furthermore, they discussed how the representation in the form

of a truth table of coordinate Boolean functions is an approach

that works only for small S-boxes (size 4 × 4 and smaller). Finally,

Picek and Jakobovic used genetic programming to evolve algebraic

constructions that are then used to construct Boolean functions

with maximal nonlinearity [20]. A similar GP concept is used here

to evolve CA rules.

5 EXPERIMENTAL SETUP AND RESULTS
5.1 Genetic Programming Approach
Genetic Programming (GP) is an evolutionary algorithm in which

the data structures that undergo optimization are computer pro-

grams. Since the aim of GP is to automatically generate new pro-

grams, each individual of a population represents a computer pro-

gram, where the most common are symbolic expressions represent-

ing parse trees. A parse tree (syntax tree) is an ordered, rooted tree

that represents the syntactic structure of a string according to some

context-free grammar.

A tree can represent a mathematical expression, a rule set or a

decision tree, for instance. �e building elements in a tree-based

GP are functions (inner nodes) and terminals (leaves, problem vari-

ables). Both functions and terminals are known as primitives.

Consider the Keccak construction that uses the CA rule χ on

an array of length n = 5 for the nonlinear part. �is rule can be

represented as:

ci (t+1) = ci (t )XOR ((NOT (ci+1(t )))AND ci+2(t )), 0 ≤ i < 5 and t ∈ N.
(7)

�e above rule is applied to the current state in step t to produce

the next state in step t + 1. Note that Eq. (7) is in fact a Boolean

function which de�nes a CA local rule with o�set ω = 0.
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We use the same approach with GP, where the task is to evolve

a Boolean function of n variables, in the form of a tree, which is

used as a CA local rule. Similarly to the Keccak rule χ , in our

experiments we assume that the o�set of the �nite CA is ω = 0.

Hence the neighborhood of a cell is formed by the cell itself and

the n − 1 cells to its right. Unlike χ , however, we also assume that

the length of the CA equals the number of variables of the CA local

rule. In this process, we assume the following: the state of a CA is

represented with a periodic one-dimensional binary array of size n.

�e elements of the binary array are represented as GP terminals,

where the terminal c0 denotes the value that is being updated. �e

terminals c1, ..., cn−1 denote the cells to the right of the current cell.

A candidate Boolean function, obtained with GP, is evaluated in

the following manner: all the possible 2
n

input states are considered,

and for each state the same rule is applied in parallel to each of the

bits to determine the next state. �e obtained global rule represents

a candidate S-box that is then evaluated according to the �tness

function. �e function set consists of several Boolean primitives

necessary to represent any Boolean function. Here, we use the

following function set: NOT, which inverts its argument, XOR,

NAND, NOR, each of which take two input arguments. Additionally,

we use the function IF, which takes three arguments and returns

the second one if the �rst one evaluates to true , and the third one

otherwise. �is function represents the multiplexer gate (MUX). In

the evolution process, GP uses a 3-tournament selection, where the

worst of the 3 randomly selected individuals is eliminated. A new

individual is then created by applying crossover to the remaining

two from the tournament. �e new individual is then mutated with

a probability of 0.5.

�e variation operators are simple tree crossover and subtree

mutation [22]. In simple tree crossover, randomly selected branches

are exchanged between two parent trees to create o�spring while

subtree mutation selects a node in the parse tree and replaces the

branch at that node by a randomly generated branch. All our

experiments suggest that having a maximum tree depth equal to

the size of S-box (i.e.,n) is su�cient. �e initial population is created

uniformly at random and every experiment is repeated 100 times.

In order to examine the in�uence of the GP parameters, we con-

ducted a tuning phase for the stopping criterion and the population

size. �e starting set of parameters was tested on S-boxes of size

n = 5, with population 200, for which 100 runs were executed.

Based on these results, the stopping criterion was set to 500 000

evaluations since no change of the best solution was detected a�er-

wards. Furthermore, we investigated population sizes 100, 200, 500,

and 1 000 on the same problem size; although there were no signi�-

cant di�erences, the best results were obtained with a population

size of 500, which we used in the following experiments.

5.2 Fitness Function
We try to �nd (n,n) S-boxes that possess the minimal necessary

properties to be used in real world ciphers. �erefore, we want

the evolved S-boxes to be balanced, with high nonlinearity, and

low di�erential uniformity. We note that those are the standard

minimum properties one should consider, although there are other

properties that are important, but out of the scope of this work.

With the goal of �nding balanced S-boxes that have as high as

possible nonlinearity and as low as possible di�erential uniformity,

we use a two-stage �tness function. First, the balancedness is

veri�ed, and if an S-box is balanced, we give it a value of zero,

otherwise the value equals -1; this is denoted with the label BAL.

Only if the S-box is balanced, we calculate the nonlinearity and

di�erential uniformity, which is subtracted from the value 2
n

, since

we aim to minimize the value of that property. Additionally, to

reduce the implementation complexity of the evolved S-box, we

aim to reduce both the number of elements in the CA rule and the

approximate circuit area. �erefore, for every function that may

be used in a GP individual, we de�ne an implementation weight
using the GE measure, which stands for Gate Equivalent (i.e., the

number of equivalent NAND gates in the speci�ed technology).

�is weight re�ects the relative area of those functions as follows:

the weights of NAND and NOR gates are set to 1, the XOR weight

is 2, the weight of IF is 2.33 and the weight of NOT equals 0.667

(note that the weights can be easily modi�ed to re�ect di�erent

hardware properties). Finally, we aim to maximize the resulting

value:

f itness = BAL + ∆BAL,0(NF + (2n − δF )) + 1/area penalty. (8)

Here, ∆BAL,0 represents the Kronecker delta function that equals

one when the function is balanced (i.e., BAL = 0) and zero otherwise.

Furthermore, we give equal weights to both NF and di�erential

uniformity since our experiments show there is no statistically

signi�cant di�erence between those two approaches and no weight

factors means less tuning. �e area penalty term is the summed

weight of all the used functions. We opted not to use some sort

of a multi-objective approach since we consider balancedness as

a constraint and we are not interested in solutions if they are not

balanced.

5.3 Experimental Results
In Table 1 we give the best obtained values for the cryptographic

properties for both S-box sizes. In the column Rule , we give the

rule that de�nes the speci�c S-box. Note that for the 5 × 5 size we

are able to �nd AB function. Besides the cryptographic properties

used in the �tness function, we also give results for the branch

number (bF ), algebraic degree (deдF ), and the algebraic degree of

the inverse S-box (deд−1

F ). Note that the results for bF , deдF , and

deд−1

F could be improved by including them into �tness function,

but we leave that for the future work.

A�er the evolution, the best obtained results are implemented

in hardware to examine their performance. We use a clock fre-

quency of 10 MHz because the dynamic power and the cell leakage

power have similar orders of magnitude for this frequency for the

technology used in this paper. �is enables us to optimize both

shares of the power at the same time. Furthermore, for a �xed clock

frequency and computation time, optimizing for energy is the same

as optimizing for average power. �e power consumption of the

S-boxes is estimated by means of simulation. In the �rst step of our

simulation setup, an S-box is generated in the style of a look-up

table (LUT). A Matlab (R2014b) script is used to generate the HDL

description of the S-box (Verilog �le S-box.v). For logic synthe-

sis, we use a standard cell approach using the NANGATE 45 nm

open cell library (PDKv1 3 v2010 12). Synopsys Design Compiler
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Table 1: �e best obtained properties.

Size NF deдF deд−1

F δF bF Rule

4 × 4 4 3 3 4 2 IF(((v3 NOR v1) XOR v0), v2, v1)

5 × 5 8 2 3 8 2 ((v2 NOR NOT(v4)) XOR v1)

5 × 5 8 2 3 4 2 ((v4 NAND (v2 XOR v0)) XOR v1)

5 × 5 12 2 3 2 2 (IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))

(I-2013.12) is used to produce the gate-level netlist and the delay �le

(.sdf ). �e standard method for estimating the power consumption

using the Synopsys tool chain is based on the random switching ac-

tivity of the internal nodes. While this approach may be suitable for

�rst-order estimation, it does not give realistic application-speci�c

data. In order to obtain a more realistic estimation, one needs to use

a real testbench to approximate the switching activity for each gate.

We use a testbench that goes through all possible n × (n − 1) input

transitions of the S-box. Modelsim SE PLUS 6.6d is used to simulate

the wave �le (.vcd) containing the switching activity of all nodes.

�is �le is then converted to an activity �le (.saif) using vcd2saif

(D-2010.06-SP2). Finally, Design Compiler is used to estimate the

power consumption. Similarly, the area cost estimation is based on

the netlist before placement and routing. �e area consumption of

the S-box is estimated by the Synopsys tool chain and represented

with the unit GE.

We emphasize that we present rules only for sizes up to 5 × 5

due to the lack of space (but also the implementation cost of such

rules). For larger sizes, our technique is still able to �nd S-boxes

with optimal cryptographic properties, but the logical complexity is

high (for example, for 7 × 7 the shortest CA rule we found requires

31GE which makes the whole S-box 217GE large, a result which is

much larger than the smallest known implementation for the AES

S-box of 128 GE [6]).

In Table 2 we present the implementation costs for a number of

reference S-boxes as well as S-boxes de�ned with CA rules. �e

column DPow denotes the dynamic power and the column LPow
denotes the cell leakage power.

In Figure 1 we depict the rule obtained with our approach that

results in a 5× 5 S-box with the same cryptographic properties (and

similar implementation cost) as Keccak.

Figure 1: 5×5 rulewith optimal nonlinearity and di�erential
uniformity.

Table 2: Implementation results, power is in nW , area inGE,
and latency in ns.

Size 4 × 4 Rule PRESENT

DPow. 470.284 LPow: 430.608 Area: 22.67 Latency: 0.27

Size 4 × 4 Rule Piccolo

DPow. 222.482 LPow: 215.718 Area: 12 Latency: 0.25

Size 4 × 4 Rule IF(((v3 NOR v1) XOR v0), v2, v1)

DPow. 242.52 LPow: 337.47 Area: 16.67 Latency: 0.14

Size 5 × 5 Rule Keccak

DPow. 321.684 LPow: 299.725 Area: 17 Latency: 0.14

Size 5 × 5 Rule ((v2 NOR NOT(v4)) XOR v1)

DPow. 324.849 LPow: 308.418 Area: 17 Latency: 0.14

Size 5 × 5 Rule ((v4 NAND (v2 XOR v0)) XOR v1)

DPow. 446.782 LPow: 479.33 Area: 24.06 Latency: 0.2

Size 5 × 5 Rule (IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))

DPow. 534.015 LPow: 493.528 Area: 26.67 Latency: 0.17

5.4 Discussion and Future Work
�e results suggest that the most natural size for CA rules is 5 ×
5 since the implementation properties have the smallest relative

overhead. �is is due to the fact that we always require at least

several logical functions to build a CA rule for an n-bit S-box. With

a small modi�cation (e.g., adding just one logical gate) it is possible

to reach optimal S-boxes for size n + 1. Naturally, for smaller S-box

sizes, one could do an exhaustive search (as done for the 4 × 4 size),

but translating such obtained S-boxes to CA rules is far from trivial

for several reasons. �e �rst reason is that not all S-boxes can be

expressed with only a single CA rule. �e second reason stems from

the fact that each coordinate function (i.e., each Boolean function)

can be expressed with a number of di�erent CA rules.

Larger sizes of S-boxes, e.g., 7 × 7 and 8 × 8 result in relatively

long rules (ine�cient from the implementation perspective), so we

refrain from giving a detailed analysis. Recall that when applying

a single rule for a number of times, even if that rule is relatively

e�cient (e.g., small), the total implementation cost of the S-box can

be high.

On a more general level, we notice that using the MUX gate

(i.e., IF function) results in much smaller optimal S-boxes compared

to cases where MUX is not allowed. �is makes it worthwhile to

use MUX gates, even though they have a somewhat larger area

compared to the other gates we use. As already said, generating

CA rules in the form of depth constrained trees has the additional

advantage that we can control the maximal latency of the circuit,

but naturally this control is somewhat coarse and there are many

possible latency values one can reach for the same tree depth.

For the area results we follow the approach where we try to

minimize the number of gates that constitute a CA rule as well as

to use the “cheapest” gates based on weight factors expressed in

terms of GE. Still, we can give only an approximation of results

since the synthesis process can result in some di�erences.

For example, the rules IF (v0, ((v3 NOR v1) XOR v2),v1) and

IF (((v3 NOR v1) XOR v0),v2,v1) have the same number and type
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of gates, but the area is equal to 18.05GE for the former and equal

to 16.67GE for the la�er. �is di�erence stems from the fact that

a�er the synthesis process the �rst rule actually uses 14 gates and

the second one only 13 gates.

We only used power analysis as an a posteriori approach where

we tested the obtained S-boxes for their dynamic and cell leakage

power. Accordingly, the results are not comparable with for in-

stance those obtained for the MIDORI cipher [1], but are be�er

than for PRESENT. �e implementation costs of larger S-boxes (i.e.,

7 × 7 and larger) is omi�ed here since it has been shown that the

most power e�cient size is 4 × 4 [2]. We note that it would also

be possible to run heuristics where the obtained CA rules would

be immediately investigated for their power consumption which

would result in be�er results than those presented here. To intro-

duce even more diversity into CA rules, we could use the switching

technique [7]. �ere, we can exchange one or more coordinate func-

tions (corresponding to a CA rule) with a new rule. In that way, we

could improve the cryptographic properties of S-boxes, �nd S-boxes

with the same cryptographic properties but smaller or more power

e�cient when implemented or just obtain S-boxes not possible

to design with only a single rule. For instance, we can take the

Keccak rule and use it on the �rst 4 input bits. However, on the last

input bit we would then use the rule (v0 XOR (v4 NOR NOT (v3)))
which enables us to obtain an S-box with the same cryptographic

properties but utilizing a di�erent set of input bits (see Eq. (7)).

6 CONCLUSIONS
In this paper, we use Genetic Programming to evolve CA rules

that de�ne S-boxes. �e results show that our approach is able to

generate a large number of rules, resulting in S-boxes that vary

from having good cryptographic properties to being optimal, all

with low implementation cost. We emphasize 5 × 5 as the best

size, since it seems to o�er the best trade-o� between the minimal

number of gates necessary to de�ne a CA rule and the number of

gates needed to de�ne an optimal 5×5 S-box. Indeed, our best result

for the 5× 5 size has an area of 26GE, which is 9GE more than the

Keccak S-box, but 10 GE less than the PRIMATEs S-box, which is

an example of an S-box with the same cryptographic properties.

Furthermore, we are able to generate a large number of rules

where we can set the desired values of cryptographic properties

which gives the potential designer more choice when selecting

appropriate S-boxes. Our technique can also be applied for larger

S-box sizes where we are still able to �nd S-boxes with optimal

values of nonlinearity and di�erential uniformity but then the im-

plementation costs can be signi�cantly higher. Finally, we are

con�dent that some of our CA rules can o�er interesting options

for future designs of block ciphers.
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[14] Joan Daemen, René Govaerts, and Joos Vandewalle. 1994. Invertible shi�-

invariant transformations on binary arrays. Appl. Math. Comput. 62, 2 (1994),

259 – 277.
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