
Evolution of Human-Competitive Agents in
Modern Computer Games

Steffen Priesterjahn, Oliver Kramer, Alexander Weimer and Andreas Goebels

Abstract— Modern computer games have become far more
sophisticated than their ancestors. In this process the re-
quirements to the intelligence of artificial gaming characters
have become more and more complex. This paper describes
an approach to evolve human-competitive artificial players
for modern computer games. The agents are evolved from
scratch and successfully learn how to survive and defend
themselves in the game. Agents trained with standard evolution
against a training partner and agents trained by coevolution
are presented. Both types of agents were able to defeat or
even to dominate the original agents supplied by the game.
Furthermore, we have made a detailed analysis of the obtained
results to gain more insight into the resulting agents.

I. INTRODUCTION

The area of commercial computer games has seen many
advancements in recent years. The games have become more
sophisticated, realistic and team-oriented. At the same time
they have become modifiable and are even republished open
source. However, there has been only little advancement in
the intelligence of the artificial players. They still mostly
use hard-coded and scripted behaviours, which are executed
when some special action by the player occurs. Instead of
investing into more intelligent opponents or teammates the
game industry has concentrated on multi player games in
which several humans play with or against each other. By
doing this the gameplay of such games has become even
more complex by introducing cooperation and coordination
of multiple players. Thus, making it even more challenging
to develop artificial characters for such games, because they
have to play on the same level and be human-competitive
without outnumbering the human players.

Therefore, modern computer games offer interesting and
challenging problems for artificial intelligence research. They
feature dynamic, virtual environments and very graphic
representations which do not bear the problems of real
world applications but still have a high practical importance.
What makes computer games even more interesting is the
fact that humans and artificial players interact in the same
environment. It is possible to play directly against the results
of a learning algorithm. Furthermore, data on the behaviour
of human players can be collected and analysed.

Steffen Priesterjahn and Alexander Weimer are with the Department
of Computer Science, University of Paderborn, 33098 Paderborn, Ger-
many (phone: +49 5251 603345; fax: +49 5251 603338; email: spriester-
jahn@upb.de).

Oliver Kramer and Andreas Goebels are with the International Graduate
School on Dynamic Intelligent Systems, University of Paderborn, 33098
Paderborn, Germany (phone: +49 5251 603349; fax: +49 5251 603338;
email: okramer@upb.de).

This paper presents an approach to evolve artificial players
to successfully compete in combat situations in a three-
dimensional action game. The artificial players, called agents
or bots1, work on the basis of input/output-rules which are
learned by an evolutionary algorithm. We used the game
Quake32 as the basis of our experiments, because it features
dynamic, multi player gameplay. So, it complies to the
features discussed above. It is also open source and runs
on Windows and Linux, which makes it easy to modify the
game. Figure 1 shows a scene of Quake3.

Game Information

Opponent

Item

Fig. 1. A Scene from Quake3

This paper is structured as follows. Section II gives an
overview of some related work to the topic. The following
section describes the basic modelling of our approach, i.e.
how the behaviour is encoded and how the evolutionary
algorithm is composed. Then, section IV gives information
on how we set up the experiments to evaluate our approach.
It also describes which parameters we chose to analyse
and why we chose certain values for the other parameters.
In section V the results of our approach are presented. In
these experiments we were able to evolve very competitive
agents, which could defeat the standard Quake3-Bot on any
difficulty setting. Though, we had to depend on the hard-
coded Quake3-Bot as a training partner. So, we also made
some experiments using coevolution. These experiments and
their results are presented in section VI. Finally, section VII
contains a detailed statistical analysis of the obtained results
to get more information about the structure of the evolved
behaviour.

1An abbreviation of robot
2id software, 1999

II. RELATED WORK

Modern computer games are more and more frequently
used in artificial intelligence research. Especially in the last
years the interest in learning and intelligent agents for such
games has grown higher and higher.

An interesting approach for such an agent has been pro-
posed by Laird et al. [5]. Their agents try to anticipate the
actions of the other players by evaluating what their own
planning mechanism would do, if they were in the same
position. In a later version reinforcement learning was added
to their approach [8]. Hawes [4] uses planning techniques
for an agent. It uses times of low activity to plan extensive
behaviours and generates only short plans if no time is
available. Nareyek [6], [7] has also implemented an agent
which uses planning and local search. Another interesting
approach has been applied by Norling [9], in which a BDI-
model (Belief-Desire-Intention) is used to model a human-
like agent.

Some very interesting and promising research has been
proposed by Thurau et al. [13], [12]. They have produced
agents which try to learn some desirable behaviour based
on the imitation of other players. In [13] neural nets which
are trained on data gained from human players and in [12]
neural gas to represent the structure of the environment are
used to learn gaming behaviour. Priesterjahn et al. [10] have
also introduced an approach to imitate arbitrary players. First
the behaviour of the players is recorded in the form of
input/output-rules. Then, an evolutionary algorithm is used to
sort out the most important rules. The underlying definition
of rules and some setup decisions from [10] also apply to
this paper. Though, this paper concentrates on the generation
of successful behaviours from scratch. In 2004 Cole et al. [3]
have introduced a GA which tunes the parameters of agents
in the CounterStrike game. In contrast to this paper, they
tried to optimise the overall criteria when a certain behaviour
should be used, instead of optimising the behaviours itself.
In a similar manner Bakkes et al. [1] have used evolutionary
algorithms to evolve team strategies for the ”capture the flag”
game.

Stanley et al. [11] also trained agents for a game-like
environment by using neuroevolution. In their system, a
human player can build training scenarios to have the agents
learn some desirable behaviour. Their learning algorithm is
fast enough to work online. However, their focus is more on
making a game out of the training process then to get agents
on a human-competitive level.

Concerning the underlying evolutionary process, we use an
evolutionary algorithm which is based on evolution strategies
as described in [2].

III. BASIC MODELLING

In the following we will give a short description of how our
approach is modelled and define the most important terms.
Our agent senses its direct environment by dividing it into a
grid of quadratic regions. The agent is always in the centre of
this grid and the grid is always rotated in relation to the agent.

So, every grid field has always the same relative position to
the agent. Traces are used to see, if a grid field is filled or
empty. Each trace sends a ray from the head of the agent
to the centre of the respective grid field. If the trace reaches
its destination, the field is marked as empty, otherwise it is
marked as filled. If an opponent occupies a grid field, the
respective field is marked with another special value. The
size of the grid is finite and covers only the vicinity of an
agent.

Definition 1 (Grid)
A grid G is a matrix G = (gi,j)1≤i,j≤n ∈ N

n×n
0 , n ∈ N

with n ≡ 1 mod 2 and

gi,j =

0, if the field is occupied

1, if the field is empty

20, if the field contains an opponent.3

G denotes the set of all possible grids.

So, each grid encodes some special situation in the game,
depending on the current environement and the current
position of an opponent, if it is in the vicinity.

Each agent has a list of rules in its memory. These
rules consist of a grid and a command. The command just
represents an action in the game, e.g. “run forward” and
“look left”. A detailed and formal description of these terms
is given in the following definition.

Definition 2 (Command, Rule)
A command C is a 4-tuple C = (f, r, ϕ, a) with f, r ∈
{−1, 0, 1}, a ∈ {0, 1} and ϕ ∈ [−180◦, 180◦]. The interpre-
tation of these variables is as follows.

f =

1, move forward

0, no movement

−1, move backward

r =

1, move to the right

0, no movement

−1, move to the left

a =

{
1, attack

0, do not attack
ϕ = alteration of the yaw angle

C denotes the set of all possible commands.

A rule R : G → C maps a grid to a command. R denotes
the set of all possible rules.

The behaviour of the agents is based on a simple operating
cycle as it is shown in figure 2. After the agent has acquired
its current grid, it compares this grid to the grids of the rules
in its memory. For this comparison, both grids are smoothed
with a Gaussian filter 4 and the Euclidean distance between

3A value of 20 has been chosen to emphasise the positions of the
opponents. The choice of this value was the result of an empiric process.

4The Gaussian filter makes it possible to calculate the rough similarity
between two matrices. For example, if you compute the Euclidean distance
between (1, 0, 0), (0, 1, 0) and (0, 0, 1), they will all be equidistant.
However, in our sense (1, 0, 0) and (0, 1, 0) are more similar than (1, 0, 0)
and (0, 0, 1). After being smoothed with a Gaussian filter you get for
example the vectors (1, 0.2, 0), (0.2, 1, 0.2) and (0, 0.2, 1). Now, the
Euclidean distances give a better representation of the similarities between
the vectors.

get grid compare findbest

executeaction

o
p

tim
iz

e
d

b
y

e
v

o
lu

tio
n

Fig. 2. The Basic Operating Cycle. (x - player, • - opponent)

the resulting matrices is calculated. The rule which contains
the best fitting grid is then executed. This process is repeated
10 times per second. So, each time frame for choosing an
action has a length of 100 milliseconds.

During the optimisation phase of our approach these lists
of rules are optimised with an evolutionary algorithm (EA).
Each bot owns a rule list {R1, ..., Rk} ∈ Rk with a fixed size
k ∈ N. At the beginning, the first individuals are initialised
with randomised rules. That means that we initialise the
grid randomly with filled or empty fields and randomly
put one opponent on some position on some of the grids.
The commands are also randomly chosen. The yaw angle is
initialised with a random angle in [−90◦, 90◦]. Table I gives
an overview of how randomised rules are constructed.

TABLE I

CONSTRUCTION OF RANDOMISED RULES

Value Randomly chosen from

grid field {0, 1}
opponent on grid {TRUE, FALSE}
opponent position random grid field

f {−1, 0, 1}
r {−1, 0, 1}
ϕ [−90◦, 90◦]

a {0, 1}

After the initialisation, crossover and mutation are used
to select the best rules and to gain further optimisation of
the performance of the agents.

Population and Structure:
Concerning the population structure and the selection
scheme of our evolutionary algorithm we use a (µ + λ)-EA
based on evolution strategies. The size of the parental
population is µ ∈ N. In each generation λ ∈ N offspring
individuals are produced applying the variation operators
crossover and mutation.

Crossover:
For the crossover, two parents are chosen randomly with
uniform distribution from the parental population. Let
{R1, ..., Rk} ∈ Rk and {R′

1, ..., R
′
k} ∈ Rk be the rule

lists of the parents. Then, the rule list of an offspring

{O1, ..., Ok} ∈ Rk is created by randomly choosing each
rule Oi from {Ri, R

′
i} with uniform distribution. So,

crossover effects the structure of the rule lists.

Mutation:
In contrast to crossover, the mutation operator effects the
structure of the rules itself. All changes are made with
the same probability pm and uniform distribution. For the
grid, a grid field can be changed from empty to full or
vice versa. The position of an opponent on the grid can be
changed to one of the neighbouring grid fields, though it
cannot be moved beyond the grid borders. For the command
(f, r, a, ϕ) of a rule, f, r and a can be set to one of their
possible values. The alteration of the view angle ϕ can be
changed by adding a random angle ∆ϕ ∈ [−α◦, α◦].

Simulation and Fitness Calculation:
The fitness of each bot is evaluated by letting it play against
the built-in Quake3-Bot and apply its list of rules for a fixed
simulation period. The summed health loss of the opponents
hopp ∈ N0 and the health loss of the bot hown ∈ N0 are
counted and integrated into the fitness function

f = wopphopp − wownhown.

Health loss of the opponent increases, own health loss
decreases the fitness of the agent. The weights wown and
wopp determine the influence of each value.

We noticed that a fitness calculation by f = hopp − hown

(with wown = wopp = 1) could lead to an undesirable
gaming behaviour. Some agents specialised themselves in
running away from the opponent. However, when we chose
wown = 1 and wopp = 2 we created bots which tended to
behave suicidal. Therefore, we introduced a dynamic fitness
calculation. At the beginning, we start with a rather high
value for wopp. After each generation, a regression factor
0 < q < 1 is applied to wopp until wopp reaches 1.0. wown

is not changed and set to 1.

IV. EXPERIMENTAL SETUP

Since we were more interested in the capabilities of
our approach than on the evolutionary algorithm itself, our
interest was aimed at the influence of the design parameters,
e.g. the size of the grid or the rule lists, and not on the

parameters of the EA. Therefore, we decided to conduct
several experiments concerning the design parameters and
to leave the EA-parameters fixed. As a result of an empiric
process, i.e. extensive testing and several experiments, we
chose those parameters according to table II.

TABLE II

PARAMETER SETUP

Parameter Value

Population Size µ + λ 60

µ 10

λ 50

Mutation Probability pm 0.1

Yaw Angle Mutation Range α 5◦

Evaluation Timespan 60 seconds per agent
(1 hour per generation)

wown 1

wopp starts at 2

Regression Factor q 0.98

Termination after 3 days (= 72 generations)

Number of Runs per Experiment 5

Each experiment was repeated 5 times to gain statistically
more valid results. All experiments were run for three days
(72 generations). We have also experimented with some
longer runs, but we saw only marginal performance improve-
ments.

Our experiments took place on a small map/level which
consisted of only one room and a central column. This
was done to increase the probability that the agents actually
meet each other. So, the evaluation time could be decreased.
Furthermore, since we were only interested in learning the
fighting behaviour, a small map was sufficient for our exper-
iments. A Quake3-Bot was placed on this map and played
against all agents of the population, one after another. Thus,
we had an opponent which plays the same way all the time.
This reduces the variations in the fitness function. Though,
performance measuring is still influenced by coincidence,
e.g. if the bots directly see each other at the beginning of
a round or not. We figured out that we need at least one
minute of playing time to get reliable results, especially in
the first generations in which our agents only show very
random behaviour. An even shorter evaluation time would
lead to too much fluctuations in the fitness evaluation. On
the other side, a too long evaluation time would lead to an
even longer running time of the algorithm. The regression
factor was chosen so that wopp reaches 1.0 after the first 30
generations.

For the design parameters we again conducted a series of
tests to find out good values. We then took the best values and
systematically changed each parameter to detect its influence.
Table III gives an overview of the conducted experiments.
Experiment 1 denotes the base experiment.

It is important to notice that we modified the density
and not the size of the grid. So, all experiments were run
with a grid of approximately 15 metres x 15 metres in the

TABLE III

EXPERIMENTAL SETUP

Grid Size Rule List Size

1 (base) 15x15 100

2 15x15 50

3 15x15 10

4 15x15 400

5 11x11 100

6 21x21 100

virtual world. However, in experiments 5 and 6 the grid was
separated into 11x11 and 21x21 fields respectively.

V. RESULTS

Figure 3(a) shows the results of our experiments. There,
the mean of the fitness values of the best individuals of
each generation is plotted. For better visibility we plotted
the fitness values as if wown and wopp would have been
1 already at the beginning. It can be clearly seen that our
agents learned to defeat or to be as good as the Quake3-Bot
in all experiments, since they all reached fitness values above
zero. In the case of experiment 1 even the mean fitness of all
individuals of a generation rose above zero (see figures 3(c)
and 3(d)). The best individuals outperformed their opponent
already after five to seven generations.

Figure 3(b) shows the same plots as 3(a) smoothed with a
Bezier curve for better visibility. Experiment 1 reached the
highest performance. In one minute the best agent applied
up to 3400 points more damage to the Quake3-Bot than the
Quake3-Bot applied to them. This is a very large difference,
given that the used weapon is only able to apply up to
approximately 100 points of damage per second in the case
of a direct hit. So, it can be said that the best evolved agents
dominated the hard-coded Quake3-Bots.

Looking at the differences, it can be seen that the size
of the rule list has a profound influence on the performance
of our approach. Reducing the rule list size from 100 to
50 and 10 reduces the performance. Using a rule list size
of only 10 rules results in the worst performance of all
experiments. However, it is not the case that using a larger
rule list always results in a better performance. Experiment
4, which used 400 rules per agent, performs worse than the
base experiment.

Concerning the grid densities, the experiments show that a
too dense (experiment 6) or a too sparse grid (experiment 5)
can compromise the performance. In the case of the sparse
grid details might get lost, which affects the decision making
or rule selection process. On the other side, a too dense
grid blows up the search space, which compromises the
convergence speed of the underlying EA.

In addition to the consideration of the pure fitness devel-
opment we think that it is even more important to assess the
gaming behaviour of the evolved agents on a quality level.
Though, such an assessment can only be very subjective. As
it is common for computer games, we call a behaviour a good

2000

1500

1000

500

0

-500

 10 20 30 40 50 60 70

fit
ne

ss
 (

w
ith

 w
_o

w
n

=
 w

_o
pp

 =
 1

)

generations

1: 15x15, 100 Rules
2: 15x15, 50 Rules
3: 15x15, 10 Rules
4: 15x15, 400 Rules
5: 11x11, 100 Rules
6: 21x21, 100 Rules

(a) Mean of the best Individuals in each Generation

2000

1500

1000

500

0

-500

 10 20 30 40 50 60 70

fit
ne

ss
 (

w
ith

 w
_o

w
n

=
 w

_o
pp

 =
 1

)

generations

1: 15x15, 100 Rules
2: 15x15, 50 Rules
3: 15x15, 10 Rules
4: 15x15, 400 Rules
5: 11x11, 100 Rules
6: 21x21, 100 Rules

(b) Smoothed Plots of Figure 3(a)

0

-500

-1000

-1500

 10 20 30 40 50 60 70

fit
ne

ss
 (

w
ith

 w
_o

w
n

=
 w

_o
pp

 =
 1

)

generations

1: 15x15, 100 Rules
2: 15x15, 50 Rules
3: 15x15, 10 Rules
4: 15x15, 400 Rules
5: 11x11, 100 Rules
6: 21x21, 100 Rules

(c) Mean of all Individuals in each Generation

0

-500

-1000

-1500

 10 20 30 40 50 60 70

fit
ne

ss
 (

w
ith

 w
_o

w
n

=
 w

_o
pp

 =
 1

)

generations

1: 15x15, 100 Rules
2: 15x15, 50 Rules
3: 15x15, 10 Rules
4: 15x15, 400 Rules
5: 11x11, 100 Rules
6: 21x21, 100 Rules

(d) Smoothed Plots of Figure 3(c)

Fig. 3. Experimental Results

gaming behaviour if it looks fluid and generally speaking
human-like.

Our agents showed a very aggressive behaviour and were
able to move fluidly. 5 Interestingly, almost all experiments
resulted in agents which tried to hunt and closely follow their
opponent. At the same time they tried to avoid the attacks of
their opponent by running from one side to the other. Playing
against them is quite hard, because they really put the player
into a defensive position.

As mentioned above, if we do not use the dynamic fitness
function adjustment and simply use f = hopp − hown as
a fitness function, the agents will learn to run away from
the opponent in some experiments. So, running away seems
to be a local optimum. It minimises the own health loss.
Once caught in this behaviour, it is not easy to learn that the
fitness can even be further increased when the agent attacks
its opponent, because it would first mean a deterioration of
the performance when the behaviour is changed. Therefore,
the aggressive behaviour shown by the best agents in our
experiments might also be only a local optimum. However,

5See www.upb.de/cs/ag-klbue/de/staff/spriesterjahn/videos/evobot.avi for
a demonstration.

since this behaviour showed up in almost all experiments and
in always all setups and given the reached performance, it is
also a very good local optimum.

VI. COEVOLUTION

Having seen that our approach is able to create successful
behaviour from scratch, we wanted to see if it would be
possible to work without a third party opponent – namely
the Quake3-Bot – to measure the performance of the agents.
In practice we cannot assume that we have any hard-coded
agents at our disposal to use them as training partner. There-
fore, we decided to evolve gaming agents using coevolution.

We simply took two populations which used the same pa-
rameters as in the base experiment above. These populations
were synchronised so that the n’th agent of population one
would always play against the n’th agent of population two.
Since coevolution normally needs more time to converge we
granted the algorithm a significantly longer running time of
200 generations.6.

After that process we took the final generation and evalu-
ated their performance by letting each of them play for one

6This resulted in a running time of more than one week.

minute against the Quake3-Bot. As a result this approach
was able to produce agents which could perform as good as
the Quake3-Bot. Some defeated it by a margin of up to 1000
health points. This shows that well performing results can be
produced by coevolution.

Though, the behaviour of the evolved agents was not as
fluid as the behaviour of the agents which were evolved by
standard evolution. They moved a bit choppy and therefore
were easily identifiable as artificial players. This behaviour
is similar to the behaviour of the agents we obtained by
standard evolution in an early stage. So, we made a longer
run of more than 300 generations. The behaviour of these
agents was indeed more fluent. However, the performance
improvement over using 200 generations was only marginal.

VII. ANALYSIS OF THE RESULTS

This section presents an analysis of the evolved rule lists,
to find out more about the structure of the gained rules. We
applied a statistical analysis to the rule selection behaviour of
the agents. We chose to use second order statistics, because
we were interested in the relations between the single rules.
Therefore, we used co-occurence matrices as defined in the
following definition.

Definition 3 (Co-occurrence Matrix)
For a rule list {R1, ..., Rn} ∈ Rn, the Co-occurrence Matrix
P is defined as P = (pi,j)1≤i,j≤n, where pi,j denotes
the probability that rule Rj is executed directly after the
execution of Ri.

We were especially interested if the rules are executed in
repetition or if there is a structure in the rule lists in which
a row of special rules is executed. Therefore, we defined the
following admeasurements.

Definition 4 (Reflexivity ρ, Transitivity τ)
For a given co-occurence matrix P = (pi,j)1≤i,j≤n, the
value ρ ∈ [0, 1] whith

ρ =
n∑

i=1

pi,i

is called the reflexivity of P . The value τ ∈ [0, 1] whith

τ = 1 − ρ

is called the transitivity of P .

The reflexivity ρ indicates the strength of the main diagonal
of the matrix and denotes the overall probability that rules
are executed in repetition. The transitivity τ denotes the
probability that another rule is chosen after one rule has been
executed.

We took the best performing agents from each setup and
computed the respective values after they had played for a
longer time period7. We also did some first order statistics
and calculated the standard deviation σ for the probability of

7At least 20 minutes

a rule to be selected. A low standard deviation would indicate
that the rules are executed rather uniformly distributed. A
higher value would indicate that there are big differences
between the execution counts of the single rules, e.g. when
only five out of one hundred rules are really used. The results
are presented in table IV. We also added the reflexivity and
transitivity of a rule list which we gained by the imitation
based approach in [10].

TABLE IV

STATISTICAL ANALYSIS

Grid Size Rule List Size σ ρ τ

1 15x15 100 0.34 28% 72%

2 15x15 50 0.24 30% 70%

3 15x15 10 0.28 36% 64%

4 15x15 400 0.20 26% 74%

5 11x11 100 0.23 24% 76%

6 21x21 100 0.21 24% 76%

Coevolution 15x15 100 0.20 23% 77%

Imitation 25x25 50 0.06 31% 69%

The values for ρ and τ are relatively similar in all
experiments, including coevolution. This seems to lead to the
conclusion that all the best rule lists are organised in a similar
way. Interestingly the values from the imitation based rule
list are also very similar to the other ones except the standard
deviation. This indicates that there is a similar structure in
the imitation based rule list, but the work is distributed onto
a higher number of important rules.

For a further analysis we chose to look at the co-occurence
matrices themselves. Figure 4 shows some samples of the
gained matrices. The x- and y-axis denote the number of
a rule in the respective rule list. The z-axis stands for the
probability that rule i is followed by rule j.

Figure 4(a) shows the co-occurence matrix of the best
individual that could be evolved. It originates from the base
experiment using 100 rules and a 15x15 grid. It shows a
structure that we have found in most of the high performing
agents. It consists of just one main rule8 which is executed
in repetition and in this case two supporting rules9 which
are mostly only executed once and then a switchback to the
main rule occurs.

To gain more insight into this structure table V shows the
transition probabilities of the three most important rules in
figure 4(a). 23% of all transistions are transistions from rule
37 to 37. So, in almost one quarter of all rule executions
this rule is executed in repetition. Therefore, rule 37 is the
main rule. A transition from the main rule to the supporting
rules 82 and 85 occurs in 14% of all transitions respectively.
The same holds for transitions from these rules to the main
rule. However, transitions between the supporting rules and
repetitions of these rules occur only rarely. So, in most cases
the main rule is executed right after the supporting rules have
been executed just one time. They are just used to correct

8The peak on the main diagonal at position (37,37)
9The symmetric peaks at (37,82), (82,37), (37,85) and (85,37)

20

40

60

80

100

20

40

60

80

100

0
0.05

0.1

0.15

0.2

20

40

60

80

(a) 15x15, 100 Rules

10

20

30

40

50

10

20

30

40

50

0

0.05

0.1

0.15

10

20

30

40

(b) 15x15, 50 Rules

20

40

60

80

100

20

40

60

80

100

0

0.05

0.1

0.15

20

40

60

80

(c) Coevolution

10

20

30

40

50

10

20

30

40

50

0

0.02

0.04

10

20

30

40

(d) Based on Imitation

Fig. 4. Some Co-occurrence Matrices (The Plots have different Scales.)

certain actions. Though, without them the agent would not be
as successful as it is. Another point that should be noticed is
that the sum of the transition probabilities of these three rules
is just about 80%. So, in 20% of all cases transitions between
the other rules occur. As figure 4(a) shows, these transistions
are distributed very evenly and range between 0% and 1%.
So, the other rules still have an influence, although they are
used quite rarely. Some of them might encode behaviours
for some special situations, e.g. if the agent has run into a
corner.

TABLE V

THE HIGHEST TRANSITION PROBABILITIES OF FIG. 4(A)

rule # 37 82 85

37 23% 14% 14%

82 14% 1% 0.5%

85 14% 0.2% 2%

The main rule encodes the main behaviour of the agent,
whereas the supporting rules correct this behaviour to adapt
to the behaviour of the opponent. So, the overall behaviour is
encoded in the interplay of these three rules. Other rule lists

with a similar structure use three or four supporting rules
or show a slight modification of this schema. For example
figure 4(b) shows one main rule and two supporting rules,
where one supporting rule is also run in repetition for some
periods.

It might be surprising that only 3 of 100 rules are really
used. However, already one rule is enough to encode the
behaviour to circle around an opponent, which is not a trivial
and also a very successful behaviour often shown by human
players.

In another experiment we reduced the rule list to just
these three rules. The agent which used this rule list was
following and attacking the opponent. So theses rules were
responsible for that behaviour. However, the agent got into
problems when it went into a corner or could not see the
opponent. So, the other rules were indeed important to handle
such situations, as we suspected above. When we allowed the
agent to use all rules which were executed more often than
the mean of all rules (11 of 100 rules), the agent was able
to show almost the same behaviour as with the full rule list.

Another interesting point is that using a large rule list
generates such a better performance, though only few rules
are really needed. We think that this is caused by the fact

that at the beginning a much broader base of different rules
to draw from is generated when using larger rule lists.
Furthermore, a crossover operation on larger rule lists also
has a higher probability to draw good rules from the parents,
because the position of the rules is fixed. In small rule lists
there is a higher probability that two good rules are on the
same position, whereby only one of them can be chosen in
a crossover operation. The impact of this effect is decreased
once the rule lists are large enough and other effects begin to
deteriorate the performance. So, a large number of rules per
individual kind of improves exploration without damaging
exploitation. If the number is too large, it will blow up the
search space and can also lead to delays, because the agent
has to look up too many rules in each time frame.

Interestingly, coevolution also produces results which fall
into the same schema. Figure 4(c) shows the co-occurence
matrix of the best individual that was obtained by coevolu-
tion. This indicates that coevolution can find similar solutions
but only needs more time to find them.

For comparison figure 4(d) shows the co-occurence matrix
of the best agent which we produced by the imitation based
approach in [10]. There is some significant difference, as the
evaluation of the standard deviation already indicated above.
Much more rules are used and there is a bunch of special
rules for special events and behaviours. This agent was also
able to show more complex behaviour. For example it was
able to take cover behind a column. We could not reproduce
this behaviour with the approach presented in this paper, even
when making some longer running experiments. However,
the performance of the best agents from the approach in
this paper was on the same level as the performance of the
imitation based agents.

VIII. CONCLUSION & FUTURE WORK

We have presented an approach to successfully evolve
agents for modern computer games. The agents were not
only able to play as good as the provided hard-coded agent,
they were even able to dominate it on any difficulty level. In
addition, our approach was also able to produce competitive
agents already after few generations. We also tested the best
trained agents on larger maps. They were still successful in
close combat situations, as we intended. So, the results can
be also used on larger maps. Furthermore, the used rules
can also be easily adjusted for other environments and tasks.
Therefore, our results can be adapted to many games and
even be used in other problem fields.

Concerning coevolution we have shown that our approach
is also able to deliver competitive results without some
preprogrammed training partner. Therefore, it can be used
to train agents in games and environments which do not yet
feature any artificial players.

In a detailed analysis we were able to show that only
few rules are sufficient to reach a high performance. We
found out that in all high performing experiments the result
was a structure in which few rules worked together. In these
cases, some rules encode a special behaviour, whereas others
correct certain movements and are only executed once at a

time. So, the overall behaviour is encoded in the interplay of
several rules.

In the future we want to concentrate on developing an
approach which is able to learn online. Therefore, we think
about removing the generational aspect of this approach. We
will also try to evaluate single rules and not whole rule
lists. By doing this, we want to reach an acceleration of the
convergence rate. This could also lead to an improvement
to the usability of coevolution. Several agents could learn
advantageous behaviours and share their knowledge with
their teammates. Furthermore, we want to concentrate more
on the imitation of other players and the cooperation with
other agents.

REFERENCES

[1] S. Bakkes, P. Spronck, and E. Postma. TEAM: The Team-Oriented
Evolutionary Adaptability Mechanism. In Proceedings of the ICEC,
pages 273–282, 2004.

[2] H.-G. Beyer and H.-P. Schwefel. Evolution strategies – A comprehen-
sive introduction. Natural Computing, 1:3–52, 2002.

[3] N. Cole, S. J. Louis, and C. Miles. Using a genetic algorithm to tune
first-person shooter bots. In Proceedings of the International Congress
on Evolutionary Computation, 2004.

[4] N. Hawes. An Anytime Planning Agent For Computer Game Worlds.
In Proceedings of the Workshop on Agents in Computer Games at The
3rd International Conference on Computers and Games, pages 1–14,
2002.

[5] J. Laird. It Knows What You’re Going to Do: Adding Anticipation
to a Quakebot. In AAAI 2000 Spring Symposium Series: Artificial
Intelligence and Interactive Entertainment: AAAI Technical Report SS-
00-02, 2000.

[6] A. Nareyek. A Planning Model for Agents in Dynamic and Un-
certain Real-Time Environments. In Proceedings of the Workshop
on Integrating Planning, Scheduling and Execution in Dynamic and
Uncertain Environments at the Fourth International Conference on
Artificial Intelligence Planning Systems, pages 7–14. AAAI Press,
1998.

[7] A. Nareyek. Constraint-Based Agents - An Architecture for Constraint-
Based Modeling and Local-Search-Based Reasoning for Planning and
Scheduling in Open and Dynamic Worlds. In Knstliche Intelligenz 2,
pages 51–53, 2002.

[8] S. Nason and J. Laird. Soar-RL: Integrating Reinforcement Learning
with Soar. In International Conference on Cognitive Modelling, 2004.

[9] E. Norling. Capturing the Quake Player: Using a BDI Agent to Model
Human Behaviour. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pages
1080–1081, 2003.

[10] S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels. Evolution of
reactive rules in multi player computer games based on imitation. In
Proceedings of the International Conference on Natural Computation,
2005.

[11] K. O. Stanley, B. D. Bryant, , and R. Miikkulainen. Evolving neural
network agents in the nero video game. In Proceedings of the IEEE
2005 Symposium on Computational Intelligence and Games (CIG’05),
2005.

[12] C. Thurau, C. Bauckhage, and G. Sagerer. Learning Human-Like
Movement Behavior for Computer Games. In Proceedings of the
8th International Conference on the Simulation of Adaptive Behavior
(SAB’04), 2004.

[13] C. Thurau, C. Bauckhauge, and G. Sagerer. Combining Self Orga-
nizing Maps and Multilayer Perceptrons to Learn Bot-Behavior for a
Commercial Game. In Proceedings of the GAME-ON’03 Conference,
pages 119–123, 2003.

