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Abstract. In this paper, a new approach to synthesize bent Boolean
functions by means of Cartesian Genetic Programming (CGP) is pro-
posed. Bent functions have important applications in cryptography due
to their high nonlinearity. However, they are very rare and their discov-
ery using conventional brute force methods is not efficient enough. We
show that by using CGP we can routinely design bent functions of up to
16 variables. The evolutionary approach exploits parallelism in both the
fitness calculation and the search algorithm.

1 Introduction

Evolutionary Algorithms (EAs) have been recently used in many engineering
areas as design and optimization methods. Thanks to the innovation introduced
into the design process, they are able to outperform conventional approaches
in particular problems. Several types of EAs have been successfully employed
in the task of evolutionary circuit design. Besides Genetic Programming (GP)
heavily used by John Koza [1] to automatically design analog circuits, regula-
tors, optical systems or antennas, excellent results have been achieved with the
use of Cartesian Genetic Programming (CGP) [2]. The applications of CGP in-
clude combinational circuits design [3] and optimization [4], digital image filter
design [5, 6], artificial neural networks design [7] and many others.

The evolutionary design is often very computationally demanding approach.
In order to reduce the design time, various application specific accelerators as
well as evolutionary algorithm modifications have been proposed. While the for-
mer case typically involves parallel fitness function implementation based on
FPGA accelerators [6, 8] or running on multicore CPUs, GPUs [9] or even com-
puter clusters [3] and exploiting parallelism at various levels (instruction, data,
thread or process), the latter one includes genotype representation or search al-
gorithm modifications. In the past, spatially structured evolutionary algorithms
have been intensively studied and variety of approaches differing in the used
evolutionary algorithm or communication topology has emerged [10–12].

While the use of computers and communication networks is becoming more
and more popular, one has to seriously deal with the security of the data being



2 Radek Hrbacek, Vaclav Dvorak

stored or transferred. In cryptography, the two most fundamental techniques to
achieve security in systems are confusion and diffusion [13]. Confusion refers to
making a complex relationship between the ciphertext and the key. Thanks to
diffusion, the statistical structure of the plain text is dissipated over significant
part of the ciphertext, which prevents from reconstructing the original statistical
information. In real cryptographic systems, the cipher key is much shorter than
the message being encrypted and thus the key has to be reused in some way, often
by applying a Boolean function to the key all over again. To avoid decryption by
an attacker, the key sequence has to be random. If the Boolean function used to
generate the key stream is close to linear, the message can be possibly deciphered.
By using functions that are as far from linear as possible, one can build more
secure cryptographic systems [14]. These functions, called bent functions, are
very rare.

The state of the art methods for finding them operate usually on the brute
force principle although exploiting some properties of the functions in order to
reduce the size of the search space [15]. The number of Boolean functions grows
exponentially with the number of variables, while the relative frequency of bent
functions decreases. Therefore, for higher number of variables (the literature re-
ports only functions of no more than 8 variables), these methods are not efficient
enough. Another approach based on genetic algorithm (GA) is very limited as
well. Even though the GA seems to be suitable for this purpose, the proposed
approach is not scalable enough [16].

Inspired by the evolutionary design of combinational circuits by means of
CGP, we propose a CGP based synthesis of bent Boolean functions. The par-
allelism at the data, thread and process level has been applied in order to take
advantage of modern processor architectures and computer clusters. The scala-
bility of this approach has been earlier verified in the task of evolutionary design
of combinational adders and multipliers [3].

The paper is organized as follows. Section 2 introduces bent Boolean func-
tions from the mathematical perspective. CGP is discussed in Section 3 and
the proposed evolutionary approach to synthesize bent functions is described in
Section 4. Section 5 is dedicated to experiments and the achieved results, final
conclusions can be found in Section 6.

2 Bent Boolean functions

Boolean functions are of great importance for various cryptographic algorithms.
Special attention is paid to the design of nonlinear Boolean functions due to their
resistance to linear cryptanalysis [17]. This section presents necessary mathemat-
ical definitions for the purpose of introduction of bent functions [14, 15].

Definition 1. A Boolean function is a function of the form f : Dn → D,
where D = {0, 1} is a Boolean domain and n ≥ 0 is the arity of the func-
tion. For a function f , let f0 = f(0, 0, . . . , 0), f1 = f(0, 0, . . . , 1), ..., f2n−1 =
f(1, 1, . . . , 1). TTf = (f2n−1 · · · f1f0) is the truth table representation of the
function f .
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Definition 2. A linear (Boolean) function is either the constant 0 function or
the exclusive OR (XOR) of one or more variables. An affine (Boolean) function
is a linear function or the complement of a linear function.

Definition 3. The Hamming distance d(f, g) between two functions f and g
is the number of truth table entries with different values.

Definition 4. The nonlinearity NLf of a function f is the minimum Hamming
distance between the function f and an affine function.

Definition 5. Let f be a Boolean function of even arity n, f is a bent function
iff its nonlinearity NLf is maximum among n-variable functions.

Affine functions are not suitable for the use in cryptography, since they are
susceptible to a linear attack. Therefore, one seeks functions that are as far
away (in the Hamming distance) as possible from all the affine functions – these
are the bent functions. The nonlinearity of a bent function f of n variables is
NLf = 2n−1 − 2

n
2 −1 [18]. This constraint is not applicable for functions of odd

Table 1. Examples of 4-variable Boolean functions and their nonlinearities.

function f truth table TTf nonlinearity NLf

li
n
ea

r

0 0000000000000000 0

x0 1010101010101010 0

x1 1100110011001100 0

x1 ⊕ x0 0110011001100110 0

x2 1111000011110000 0

x2 ⊕ x0 0101101001011010 0

x2 ⊕ x1 0011110000111100 0

x2 ⊕ x1 ⊕ x0 1001011010010110 0

x3 1111111100000000 0

x3 ⊕ x0 0101010110101010 0

x3 ⊕ x1 0011001111001100 0

x3 ⊕ x1 ⊕ x0 1001100101100110 0

x3 ⊕ x2 0000111111110000 0

x3 ⊕ x2 ⊕ x0 1010010101011010 0

x3 ⊕ x2 ⊕ x1 1100001100111100 0

x3 ⊕ x2 ⊕ x1 ⊕ x0 0110100110010110 0

n
o
n
li
n
ea

r x3x0 1010101000000000 4

x2x1x1 ⊕ x3 ⊕ x0 1101010100101010 2

x3x0 ⊕ x1 0110011011001100 4

x3x2 ⊕ x1 ⊕ x0 0110011011001100 4

b
en

t x3x2 ⊕ x1x0 0001000100011110 6

x3x0 ⊕ (x2 ⊕ x0)x1 ⊕ x2 ⊕ x0 1011100000010010 6
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arity that can, in general, have greater nonlinearity. This paper deals only with
functions of even number of variables.

Examples of Boolean functions of 4 variables can be seen in Table 1. In
the first 16 rows, all linear functions are listed, followed by several nonlinear
and bent functions, the maximum nonlinearity of 4-variable functions is NLf =

24−1 − 2
4
2−1 = 6.

The number of different Boolean functions grows exponentially with the num-
ber of variables: Nf (n) = 22

n

. However, the relative frequency of bent functions
decreases very fast (see Table 2) and thus, for n ≥ 6, identifying them is like
looking for a needle in a haystack.

Table 2. Relative frequency of n-variable bent functions [14].

variables n 2 4 6 8

Boolean functions 24 216 264 2256

bent functions 23 ≈ 29.8 ≈ 232.3 ≈ 2106.3

relative frequency 2−1 ≈ 2−6.2 ≈ 2−31.7 ≈ 2−149.7

Recently, various approaches based on the properties of bent functions have
been proposed, effectively reducing the number of the Boolean functions needed
to be verified in order to identify bent functions by means of a brute force search
[16, 15]. In some special cases, bent functions can be constructed directly [17].

3 Cartesian Genetic Programming

Cartesian genetic programming - a branch of genetic programming - has been
introduced by Miller [2] and since then it has been successfully applied to a
number of challenging real-world problems [19]. In contrast with GP which uses
tree representation, an individual in CGP is represented by a directed acyclic
graph. This dissimilarity enables the candidate solution to automatically reuse
intermediate results and have multiple outputs, which makes CGP very suitable
for design of various kinds of digital circuits, digital filters, etc.

A candidate program in CGP consist of the cartesian grid of nr × nc pro-
grammable nodes interconnected by a feed-forward network, as it can be seen
in Figure 1. Node inputs can be connected either to one of ni primary inputs
or to a node in preceding l columns, each node has usually a fixed number of
inputs nni = 2. Each node can perform one of nni-input functions from the set
Γ . Each of no primary circuit outputs is connected either to a primary input
or a node output, the output connectivity can be additionally restricted by the
o-back parameter. By changing the grid size and the l-back parameter, one can
control the area and delay of the circuit.

Thanks to the fixed topology of CGP programs, each chromosome can be
encoded using an fixed-sized array of nr · nc · (nni + 1) + no integers (nni inputs



Bent Function Synthesis by Means of CGP 5

F

nc columns

n
r r

ow
s

n
o 

pr
im

ar
y 

ou
tp

ut
s

n
i p

ri
m

ar
y 

in
pu

ts
F F F F

F F F F F

F F F F F

Fig. 1. Cartesian genetic programming scheme.

and one function per each node). Each primary input is assigned a number from
{0, ..., ni − 1} and the nodes are assigned numbers from {ni, ..., ni + nr · nc − 1}.
Unlike the genotype, the phenotype is of variable length depending on the num-
ber of inactive nodes (i.e. nodes whose output is not used by any other node
or primary output), which implies the existence of individuals with different
genotypes but the same phenotypes. The existence of individuals with different
genotypes but with the same fitness value is usually referred to as neutrality.
For certain problems, the neutrality significantly reduces the computational ef-
fort and helps to find more innovative solutions [20].

CGP uses a simple mutation based (1 + λ) evolutionary strategy as a search
mechanism, the population size 1+λ is mostly very small, typically, λ is between
1 and 15. The initial population is constructed randomly in most cases, however,
it can be seeded with a known solution as well (evolutionary optimization) [4].
In each generation, the best individual or a sibling with the same fitness value is
passed to the next generation unmodified along with its λ offspring individuals
created by means of point mutation operator. The mutation rate m is usually set
to modify up to 5 % randomly selected genes. Usually, no crossover operator is
used in CGP, however, for particular problems (e.g. symbolic regression), special
crossover operators have been investigated [21]. None of them has been confirmed
as useful for other problem classes so far.

In the case of combinational circuit design, the fitness function is given by
the number of correct output bits compared to a specified truth table. All com-
binations of input values (2ni test vectors for a circuit with ni inputs and no
outputs) have to be fetched to the primary inputs in order to obtain a fully
working circuit. no · 2ni output bits have to be verified so as to compute the
fitness value.
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4 Bent function synthesis by means of CGP

The principle of bent function synthesis by means of CGP is very similar to the
case of combinational circuit design, since every Boolean function can be imple-
mented by a combinational circuit. The difference lies in the fitness function.
Unlike combinational circuits having fitness value equal to the total number of
wrong output bits, the fitness value of a bent function candidate is its nonlin-
earity, i.e. the lowest Hamming distance from a linear function. Despite the fact,
that bent Boolean functions have single output comparing to combinational cir-
cuits having arbitrary many outputs, the fitness calculation is computationally
more intensive, since the number of linear functions being compared with the
candidate individual grows exponentially with the number of variables.

i0

i1

i2

i3

i4

i5

o0

Fig. 2. Example of an CGP individual representing the Boolean function f(i5, . . . , i0) =

o0 = ((i1 ⊕ (i1 + i3)) ⊕ i2i5) ⊕ i0 + (i0 + i4) with the truth table TTf =
0011110001101001001100110110011011110000101001011111111110101010. This func-
tion has nonlinearity NLf = 28 and thus it is bent.

Figure 2 depicts an example of an CGP individual representing a Boolean
function. Note that the representation is not optimal in terms of area or delay,
since the only significant property is the truth table.

While evaluating an individual’s fitness value, all active genes of the chromo-
some need to be traversed and their output values need to be calculated. The
single output is then compared against all linear functions simply by XORing the
values and counting the number of ones. There is no need to compare the values
to the remaining affine functions (the complements of linear functions), since the
following always holds true:

d(f, g) + d(f, gc) = 2n, (1)

where f, g are arbitrary n-variable Boolean functions and gc is complementary
to g.

The entire evolutionary design process can be accelerated in the same way
as it has been done in the case of combinational circuits [3]. The test vectors
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can be fed to the CGP individual in parallel, from 64 test vectors within a
standard x86-64 register up to 256 test vectors using AVX extension. Moreover,
the population can be split over a number of threads, each thread handling a
portion of the population. Nevertheless, the number of threads is substantially
limited by the population size, which is usually very small in CGP. In order
to take advantage of multicore processors or even computer clusters, additional
level of parallelism has to be exploited. By introducing spatially structured EA
principle, one can scale the evolutionary process onto arbitrary sized computer
cluster. Unfortunately, the absence of crossover operator in CGP is a very limit-
ing factor, since most parallel algorithms are based on combining genotypes from
different spatially isolated populations. Thus, simple isolated islands model with
periodical exchange of the best individual is used [3].

5 Experimental results

In this section, experiments regarding the ability of the proposed approach to
synthesize bent functions are presented. All the experiments were performed on
a computer cluster of 112 nodes with the following hardware configuration: 2× 8-
core Intel E5-2670, 128 GB RAM, 2× 600 GB 15 k scratch hard disks, connected
by gigabit Ethernet and Infiniband links.

The performance of the CGP based approach has been examined in terms
of the evolution time. The CGP parameters were set as follows on the basis
of previous experiments with combinational circuits [3]: the functions set Γ =
{BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR}, population of 5 individuals, mutation

Table 3. Bent Boolean functions CGP based synthesis times.

n
nodes hosts/ time [s]

nr × nc threads mean median std

6 1 × 50 1/1 0.000819 0.000685 0.000668

8 1 × 100 1/1 0.00470 0.00343 0.00410

10 1 × 150 1/1 0.0602 0.0442 0.0483

12 1 × 200

1/1 2.0443 1.4057 1.9579

1/4 1.1291 0.8392 1.0610

4/1 0.8240 0.6267 0.5405

40/1 0.3859 0.3618 0.1080

14 1 × 250

1/1 133.202 91.765 146.839

1/4 76.040 54.954 72.808

4/1 44.680 35.700 34.165

40/1 15.806 15.255 4.853

16 1 × 300

1/1 6223.66 4666.82 4734.02

1/4 3880.06 3744.23 2571.49

4/1 1855.79 1543.12 1329.10

40/1 636.13 565.68 229.06
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rate 5 %. The number of rows was set to nr = 1 and the l-back parameter was
maximal, enabling the greatest connectibility (there were no requirements on the
propagation delay). The size of the grid was empirically chosen for each variable
count n as a optimal choice with respect to the evolution time (about 10× larger
than the average individual found). No limitations on the number of generations
were imposed, each run was successful. The spatially structured implementations
exchanged the best individual over all populations every 100 generations.

The achieved results can be seen in Table 3, four different configurations
of the algorithm were compared – basic single threaded variant, accelerated 4-
thread parallel version, 4-island and 40-island spatially structured variants. For
each configuration, 100 independent runs were performed and common statisti-
cal metrics were calculated – the mean time, the median value and the standard
deviation. The evolution times for functions of less than 12 variables are negli-
gible and cannot be improved by means of thread or process level parallelism,
because there is not enough work to distribute. For higher numbers of variables,
the computational effort grows rapidly and the parallel implementations help
significantly to reduce the evolution time. For example, the design of 16-variable
bent functions can be sped up 10× on the computer cluster in comparison with
the basic single threaded implementation. It shows that even a small number of
isolated populations can more efficiently utilize the power of a multicore proces-
sor than the multithreaded single population approach. Not only the mean and
median times, but also the standard deviations of the evolution times are lower,
increasing the probability of finding a bent function in a limited time.

An example of a bent Boolean function of 16 variables synthesized by means
of CGP can be seen in Figure 3. Its nonlinearity is 32,640 and the CGP repre-
sentation has 24 active nodes with the maximum delay of 7.

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9
i10
i11
i12
i13
i14
i15

o0

Fig. 3. CGP representation of a 16-variable bent Boolean function.
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6 Conclusions

In this paper, a new approach to synthesize bent Boolean functions based on
CGP has been proposed. Bent functions have applications in cryptography due
to their significant properties – when used in a cipher, their nonlinearity makes
cryptanalysis harder. The relative frequency of bent functions among all Boolean
functions of the same arity is rapidly decreasing with the number of variables
and designing such functions is harder and harder.

It was shown, that by using CGP, we are able to routinely design bent
Boolean functions of up to 16 variables. The evolutionary process was sped
up by employing various levels of parallelism in both fitness calculation and the
search algorithm, which gives a great scalability to the proposed approach. Sev-
eral algorithm configurations were experimentally compared and it was shown,
that by using a simple isolated island model, one can significantly reduce the
evolution time. Additional effort has to be made in order to investigate potential
common features shared by bent functions found using independent CGP runs.

Even though bent Boolean functions themselves have great properties, in or-
der to achieve maximum confusion in real cryptographic systems, there should be
a balance between bits that are changed and that are not. This can be achieved
by using balanced functions; however, no bent function is balanced and thus
a trade-off between nonlinearity and balance has to be sought [17, 14]. In our
future research, we want to focus on designing such functions by means of evo-
lutionary algorithms. Further work will be also devoted to the optimization of
the synthesized functions in terms of area and delay inspired by fast SAT-based
optimization methods for complex combinational circuits [4].
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