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Abstract—This paper presents a new method for multiple
fundamental frequency (F0) estimation on piano recordings. We
propose a framework based on a genetic algorithm in order to
analyze the overlapping overtones and search for the most likely
F0 combination. The search process is aided by adaptive spectral
envelope modeling and dynamic noise level estimation: while the
noise is dynamically estimated, the spectral envelope of previously
recorded piano samples (internal database) is adapted in order
to best match the piano played on the input signals and aid the
search process for the most likely combination of F0s. For compar-
ison, several state-of-the-art algorithms were run across various
musical pieces played by different pianos and then compared
using three different metrics. The proposed algorithm ranked first
place on Hybrid Decay/Sustain Score metric, which has better
correlation with the human hearing perception and ranked second
place on both onset-only and onset–offset metrics. A previous
genetic algorithm approach is also included in the comparison to
show how the proposed system brings significant improvements
on both quality of the results and computing time.

Index Terms—Acoustic signal analysis, automatic music tran-
scription, fundamental frequency (F0) estimation, music informa-
tion retrieval, pitch perception.

I. INTRODUCTION

M ULTIPLE fundamental frequency (F0) estimation was
introduced by Shields [1] in his work on separating

co-channel speech signals. Afterwards, the research of mul-
tiple-F0 estimation was extended to polyphonic pitch estimation
in the context of automatic music transcription for polyphonic
music signals by Moorer [2] and Piszcalski and Galler [3]. In
general, multi-pitch estimation algorithms assume that there
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can be more than one harmonic source in the same short-time
signal. As mentioned by Yeh et al. [4], that signal can also be
expressed as a sum of harmonic sources plus a residual1:

with

(1)
where is the discrete time index, is the number of harmonic
sources, is the quasi-periodic part of the th source,

represents the period of the th source, and is the
residual. Using the Fourier Series, this model can be represented
as follows:

(2)

The approximation on the last step of this equation is for prac-
tical usage: a finite and small number of sinusoids is com-
monly used to approximate a quasi-periodic signal.

The main problem behind multiple-F0 estimation is dealing
with the modeling of , a task which implies estimating the
number of sources and the related F0s. The decomposition of
the observed signal into an unknown number of model sources is
actually not only a problem of pattern matching but also a search
problem, i.e., finding the most likely combination of F0s for
the modeling of . Genetic algorithms are very successful in
solving both pattern matching and search problems [5]. This is
our main motivation in proposing a new multiple-F0 estimation
algorithm based on genetic algorithms.

Since the first works in polyphonic music transcription by
Moorer [2] and Piszcalski and Galler [3], polyphonic music
transcription systems almost always rely on the analysis of in-
formation present in the frequency domain. Klapuri [6] uses
iterative calculation of predominant fundamental frequencies
in separate frequency bands and Martin [7] uses blackboard
systems. There are also techniques that use the principles of
human auditory organization for pitch analysis, as implemented

1The residual—����—comes from components that are not explained by the
sinusoids, for instance, the background noise, spurious components or non-har-
monic partials.
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by Kashino et al. [8] by means of a Bayesian probability net-
work, where bottom-up signal analysis can be integrated with
temporal and musical predictions, and by Wamsley et al. [9],
[10], who use the Bayesian probabilistic framework to estimate
the harmonic model parameters jointly for a certain number of
frames. The usage of a hidden Markov model and spectral fea-
ture vectors was proposed by Raphael [11] to describe chord se-
quences in piano music signals. Neural Networks were used by
Carreras et al. [12] for spectral-based harmonic decompositions
of signals. Marolt [13] uses networks of adaptive oscillators to
track partials over time. A physical model of the piano was used
by Ortiz et al. [14] to generate spectral patterns in order to com-
pare them to the incoming spectral data.

A. Genetic Algorithms and Multiple-F0 Estimation

Traditional approaches to multiple-F0 estimation rely on
the analysis or decomposition of the source signal. However,
genetic algorithm based approaches rely on the opposite: they
focus on the construction of a second audio signal that best
resembles the original audio.

In literature, the first paper using genetic algorithms for mul-
tiple-F0 appeared in 2001 by Garcia [15]. Garcia proposes that
polyphonic pitch detection can be considered as a search space
problem where the goal is to find the pitches that compose the
polyphonic acoustic signal. Although Garcia’s algorithm is able
to detect several pitches in a short-time signal, it does not take
in consideration the following aspects: onset time; offset time;
and also the dynamics of each detected F0. On the other hand,
this approach is capable of working with almost any frequency
resolution. In 2007, Lu [16] proposed an automatic music tran-
scription system based on genetic algorithms: this approach as-
sumes that a polyphonic audio signal can only be produced by
the 128 possible pitches (from the low C, frequency 8.18 Hz to
a high G, 12543.88 Hz) defined in the MIDI specification [17].
This approach is limited to signals made by simple mathemat-
ical models like the sine, sawtooth and triangle waves. Also,
it does not take into account the dynamics of each note. Al-
though the author of this approach claims that he is addressing
music transcription using genetic algorithms, his approach does
not use recombination, which is the main pillar of genetic algo-
rithms [5]. The approach relies exclusively on mutations.

In 2007, Reis and Fernandez [18] proposed a new genetic al-
gorithm approach to automatic music transcription using syn-
thesized instruments. However, this approach is not able to deal
with multiple instruments as does Lu’s [16] algorithm. Also, it
cannot detect note dynamics. Later in 2007, Reis et al. [19] pro-
posed the first genetic algorithm approach to music transcription
using real audio recordings. The authors explored the influence
of the “harmonic overfitting” phenomena, which is related to
differences in the spectral envelope between different pianos.
In 2008 Reis et al. [20] proposed a new algorithm with adaptive
spectral envelope modeling to reduce the impact of the harmonic
overfitting, and later, in 2009 [21], the latter approach was ex-
tended to multi-timbre.

Although the previously mentioned approaches already try
to apply genetic algorithms to automatic music transcription,
the proposed system described in this paper is a new and
written from scratch genetic algorithm based on the knowledge

of the authors from previous work on applying evolutionary
algorithms to multi-pitch estimation [18]–[21]. The innovation
in this system relies on dynamic noise level estimation and
its subsequent combination with spectral envelope modeling
in order to perform the transcription task. Also, to the best of
our knowledge, this is the first time an evolutionary computing
approach achieves competitive results when compared to other
state-of-the-art algorithms. Moreover, computing time required
to make the transcription is significantly reduced when com-
pared to previous approaches.

The rest of this document is structured as follows. Section II
overviews the proposed system. Section III describes the imple-
mented onset detection algorithm. Section IV describes the pro-
posed genetic algorithm. Section V describes the implemented
hill-climber algorithm. Section VI shows our experiments and
results. Finally, Section VII presents our conclusions and dis-
cusses future work.

II. SYSTEM OVERVIEW

During the audio segmentation, an onset detector is applied
on the input signal to extract onset information. Afterwards, the
audio signal is divided into several audio segments according to
the detected onsets. Each interval between two consecutive on-
sets is considered a segment. Then, for each segment, a thread is
launched running a 50-generation genetic algorithm to perform
the corresponding transcription. The search for the most-likely
combination of F0s to model is aided by an internal data-
base consisting of previously recorded piano samples. The ge-
netic algorithm also adapts the spectral envelope of the used
piano samples in order to best match the power spectrum of
the corresponding audio segment. During this process, spec-
tral envelope of the residual noise is also dynamically estimated
to favor the search process towards the desired solution (see
Fig. 1). The results obtained on each audio segment are then
merged into one whole transcription. Finally, a hill-climber al-
gorithm [22] is applied on the global transcription to adjust note
duration or to merge notes that transverse several segments. The
output of the system is the hill-climber’s final result.

Since the main focus of our work is the actual transcription
problem and not the onset detection (and also because the lack
of accuracy of the onset detector could compromise the perfor-
mance of the algorithm) the user is able to choose other onset
information as an input to the algorithm. The audio will then be
segmented in accordance to the supplied information. This way,
other onset detection systems that might be more robust can be
used and, when dealing with labeled data, usage of the real on-
sets as input is also possible.

III. ONSET DETECTION ALGORITHM

The onset detection algorithm is based on the onset detection
algorithm used by Martins [23], with slight modifications. The
approach used is based on the Spectral Flux as the onset detec-
tion function, defined as

(3)
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Fig. 1. Block diagram of the transcription algorithm.

where is the half wave rectifier func-
tion, and represents the th bin of the th frame of the
short-time Fourier transform (STFT) of the input . Linear
magnitude is used instead of logarithmic as in [24]. is the
Hamming window size. Experiments performed use a 46-ms
frame size (i.e., , with sampling rate Hz)
and a 10-ms hop size (i.e., 441 samples with Hz).

As in [23], in order to reduce the false positive rate, the onset
detection function is smoothed using a Butterworth filter
defined by

. To avoid the phase distortion (which
would deviate the time of the detected onsets) the input data is
filtered in both forward and backward directions. The result has
a precisely zero phase distortion, being the magnitude the square
magnitude of the filter response, and the order of the filter the
double of the order specified by .

The onsets are detected using a peak-picking algorithm to find
a local maximum. In fact, a peak at instant is chosen
as an onset if it meets the following criteria:

1) ;
2) .

where is the window size to achieve the local maxima;
is a multiplier so that the average should be calculated in

a broader area before the peak; is a threshold value
relative to the local average that a peak must reach in order to be

sufficient prominent to be selected as an onset; and a
residual value to avoid false positive detection in silence regions
of the signal. All these parameters were adjusted empirically on
previously performed tests using a collection of several piano
compositions played by different pianos.

Since the onsets are used as segmentation boundaries of the
input signal, the occurrence of false negatives might have a con-
siderable impact in the final results of the event segregation. The
impact of the implemented onset detection system is studied on
Section VII.

IV. PROPOSED GENETIC ALGORITHM

It is important to emphasize that the main idea behind a
genetic algorithm [5] is to have a set of candidate solutions
(individuals) to a problem evolving towards the desired solu-
tion. In each iteration (generation) those candidate solutions
are evaluated according to their quality (fitness). The worst
solutions are then discarded and the best will generate new
candidate solutions resulting from the combination of their
parent’s characteristics (genes) and minor variations (muta-
tion). This way, candidate solutions with better quality tend to
live longer and to generate better solutions, thus improving the
robustness of the algorithm. Also, when addressing a genetic
algorithm to a problem there are several aspects that must be
taken into account:

Genotype How to encode each individual or
candidate solution to the problem.

Fitness Function How to evaluate the quality of each
candidate solution.

Selection How individuals are selected from the
population to breed.

Recombination How to employ recombination: given
two individuals, how to exchange
genetic material between them to
breed two new individuals (offspring).

Mutation What kind of mutations we should
take into account, according to the
problem being solved.

Initialization How the first population is generated.

Survivor Selection How survivors are selected from one
generation to the next.

A. Genotype

Since the problem being solved is the automatic transcription
of an audio segment, a candidate solution must be a candidate
transcription. We consider a transcription as a set of musical
notes where each note has four attributes: start time, duration,
MIDI note and also MIDI velocity. Therefore, an individual is
encoded as a chromosome with a set of genes where each gene
corresponds to a musical note [see Fig. 2(a)].

Despite the onset being fixed to its segment boundaries, the
onset information needs to be included into the chromosome
so the Hill-Climber can operate properly: after the transcrip-
tion of each onset-synchronous segment, those transcriptions
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Fig. 2. (a) Genotype of an individual and corresponding phenotype. (b) Spectral envelope encoding. Each gene corresponds to a pair of values: the gain of the
respective harmonic (expressed in dB) and its inharmonicity deviation. (c) The noise is encoded as an adaptive threshold below a maximum peak of the current
time frame. Each gene corresponds to the noise threshold (expressed in dB) of the corresponding frequency bin.

are merged into one whole transcription (new individual). At
this stage, the onset time differs from each gene. Moreover, the
purpose of the Hill-Climber algorithm is to adjust the duration
of notes and merge notes that overlap (transverse several audio
segments). This process requires both duration and onset infor-
mation on each gene.

In order to deal with dynamic noise level estimation and
also spectral envelope modeling, additional chromosomes were
included inside the genotype: one additional chromosome to
encode the adaptive threshold used for the dynamic noise level
estimation and one additional chromosome for each internal
piano to adapt its spectral envelope to best match the piano
played in the original audio.

1) Spectral Envelope Modeling: The search process for the
most likely F0 combination matching the original signal is aided
by previously recorded piano samples—internal synthesizer. It
is almost certain that the piano used to record the original audio
is not the same piano that is inside the genetic algorithm to aid
the search process. Thus, when rendering a candidate solution
using the internal synthesizer there will be several differences
when compared to the original audio, specially on harmonic lo-
cations due to timbre differences between both instruments [see
Fig. 3 (bottom left plot)]. In order to overcome those differences
between the spectral envelope of both instruments, each indi-
vidual or candidate solution has a second chromosome to en-
code the spectral envelope to be applied to the internal synthe-
sizer so it can adapt to the original piano. This way, the internal
piano can match the piano where the original audio was played.

The spectral envelope is encoded on the individual as a new
chromosome [see Fig. 2(b)], where each gene corresponds to a
pair of values: the gain for its harmonic—gain —expressed
in dB and its inharmonicity deviation— —for each partial.
Although the frequency of each partial could be calculated using
the equation proposed by Fletcher et al. [25], such as in the
works of Emiya et al. [26], [27]: , where

is the inharmonicity coefficient of the piano tone [28], the
encoding of the harmonic deviation of each partial pertaining
to the genome of each individual genome was adopted so the

system could be general enough to work with other kinds of
pitched instruments.

2) Noise Level Estimation: During the transcription process,
the algorithm compares the magnitude spectrum of each gen-
erated transcription with the original audio. This comparison
should rely only on the spectral peaks of both sounds. Oth-
erwise, spectral differences on spurious locations might lead
the algorithm to an erroneous transcription. Thus, spectral data
which does not belong to the spectral peaks should be discarded.
This requires a way to somehow ignore spectral differences of
spurious components.

As in [4], the noise is understood as generated from white
noise filtered by a frequency-dependent spectral envelope. This
way, the noise level is defined as the expected magnitude level
of noise peaks and encoded in an additional chromosome. This
chromosome has the noise level for each frequency bin [see
Fig. 2(c)]. The noise level is encoded as an adaptive threshold
below the maximum peak of the current time frame , such that

(4)

where corresponds to the noise value encoded in
the th gene [see Fig. 2(c)]. Therefore, synthesized peaks below
the threshold are considered as noise peaks

if
if

(5)

where is the magnitude of the th bin from the th
frame of the original spectrum, and represents the mag-
nitude of the th bin of the th frame of the model spectrum (in-
dividual). This way, spectral data below the noise threshold will
be considered as . Thus, below the threshold,
the spectrum of each generated transcription will be equal to
the spectrum of the original audio: their difference below the
noise threshold will always be zero (see top right plot of Fig. 3).
Moreover, the spectral peaks (or at least most of them) will be
above the threshold and, thus, have impact on the comparison.
If it happens, for some reason, to have a spectral peak below the
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Fig. 3. Bottom left plot represents a major chord (C4-261.6256 Hz; E4-329.6276 Hz; and G4-391.9954 Hz) played by a Bosendorfer piano (original audio) and
its generated transcription (Bechstein). The spectrum of the generated transcription consists of the sum of each estimated component (top three plots on the left of
the same figure). The top right plot represents the same spectrum after applying the noise level estimation (light gray) and, finally, the bottom right plot represents
the latter spectrum with the evolved spectral envelope modeling.

threshold there are two hypotheses: 1) if the corresponding spec-
tral peak on the original audio is also below the threshold: they
will be equal (see top right plot of Fig. 3, below 3500 Hz); 2) if
the corresponding spectral peak on the original audio is above
the threshold: the spectral peak of the candidate transcription
will be equal to the threshold (see top right plot of Fig. 3, below
3500 Hz)—this way, it will still have impact on the comparison,
but since its difference between the corresponding spectral peak
on the original audio is diminished, it is easier for the adaptive
spectral envelope modeling to compensate their differences and
to do the rest.

The bottom left plot on Fig. 3 shows a major chord (C4-261.
6256 Hz; E4-329.6276 Hz; and G4-391.9954 Hz) played by a
Bosendorfer piano (original audio) and its generated transcrip-
tion (Bechstein). The spectrum of the generated transcription
consists of the sum of each estimated component (top three plots
on the left of the same figure). The top right plot shows how
the algorithm sees the generated mixture played by the internal
synthesizer (Bechstein) after applying the noise level estima-
tion, and the bottom right plot shows how the algorithms sees
the generated mixture after applying both noise model estima-
tion and spectral envelope. If we compare the bottom left plot,
which represents the original audio versus the generated mix-
ture with the bottom right plot, where both dynamic noise level
estimation and adaptive spectral envelope modeling were ap-
plied, we can see that the two initially different spectra became
almost identical. This way, the algorithm will consider the gen-
erated transcription as correct despite their spectral differences
(bottom left plot).

B. Fitness Evaluation

A good evaluation of each candidate’s quality leads to a better
selection of candidate solutions to form the next generation,
speeding up the convergence of the algorithm towards a possible
maximum. On the other hand, a less efficient quality (fitness)
evaluation of each candidate (individual) can drastically reduce
the evolution of the genetic algorithm. The fitness function is
the key in the evolution/convergence of the genetic algorithms
when solving different kinds of problems.

To evaluate candidate transcriptions, first we need to render
them to an audio signal and then compare the corresponding
audio signals to the input audio segment. Transcriptions whose
audio is similar to the audio input are closer to the desired solu-
tion and, thus, have fewer errors. The comparison between the
candidate transcriptions and the input audio segment is done in
the frequency domain.

For the rendering process, we considered a dynamic range
of 16 dB, that is: a note can vary its dynamics between 1 and
127. In particular, 127 MIDI velocity value corresponds to

8 dB gain and 1 MIDI velocity corresponds to 8 dB gain
and 64 MIDI velocity corresponds to 0 dB gain. The gain, ac-
cording to each note dynamic, is given by . After
each note offset, the following release equation is applied:

, where varies from
.

The current fitness function is based on the log spectral
distance or log spectral distortion and was chosen empirically
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among several other spectral distances [29]. The fitness func-
tion is defined by the equation

(6)
where is the size of the Hamming window, which is 93
ms (i.e., with 44 100-Hz sampling rate). starts
in 2 because it is the bin corresponding to the frequency of
the first piano note Hz . The multiplication by

normalizes the weight of the bins of each
octave so that, when summed, all the octaves have the same
weighted sum equal to 1. As in (5), is the magnitude of
the th bin from the th frame of the original spectrum,
represents the magnitude of the th bin of the th frame of the
model spectrum (candidate solution being evaluated).

C. Selection

Selection also plays a major role in the convergence of genetic
algorithms. In each generation all individuals are evaluated ac-
cording to their fitness. The fittest individuals have higher prob-
ability of being selected for reproduction, which results on the
creation of fitter offspring, which ultimately leads to the algo-
rithm convergence. Among the available selection operators, we
have chosen “tournament” [5]. The tournament is a selection op-
erator employed to choose each parent for the recombination:
individuals, where is the size of the tournament, are randomly
selected from the population, and then, from those individuals,
the fittest (winner of the tournament) is selected as a parent for
breeding.

D. Recombination

Recombination is the main pillar of genetic algorithms: the
building-block hypothesis [30] states that a genetic algorithm
performs well when short, low-order, highly-fit schemata (often
called building blocks) recombine to form even more highly-fit,
higher-order schemata. In other words: the ability to produce
fitter partial solutions by combining building blocks (recombi-
nation) is believed to be the primary source of the GA’s search
power.

In this specific problem, individuals might differ in the
number of genes (detected F0s) so the classic one-point
crossover [5] had to be adopted to recombine individuals with
different number of genes by choosing different points-of-cut
on each parent to generate the offspring. This one-point
cut-and-splice recombination operator is described in Fig. 4(a).

The chromosomes encoding the spectral envelope of each
instrument or the noise level estimation have always the same
size: the number of genes is fixed. Thus, the classic one-point
crossover operator [5] [see Fig. 4(b)] can be easily applied
without any restriction.

Fig. 4. Recombination operators: one-point cut and slice crossover (a) and
classic one-point crossover (b).

E. Mutation

Mutation is also a very important genetic operator because it
keeps biodiversity. The major feature of mutation is to avoid the
genetic algorithm to be stuck in a local maximum by applying
random changes in the individual’s chromosome.

The mutation operator consists on the following steps de-
scribed in Algorithm 1, where is the mutation probability.

Algorithm 1 Mutation

1: for each gene do

2: random

3: if then

4: Choose one of the following mutations:
note change
duration change by [ 50 ms, 50 ms]
harmonic change
add a new note
velocity change by [ 8, 8]
timbre change
remove the current gene

5: end if

6: end for

During the note change and add a new note mutations,
the note value is chosen from a list containing all allowed
notes. This list is previously calculated according to the most
prominent spectral peaks in each frame (see Appendix A).
The harmonic change mutation changes the current note to a
harmonic location: minus 12 semitones (half of the frequency
of the note—one octave below); minus 19 semitones; minus
24 semitones (one fourth of the frequency of the note—two
octaves below); minus 28 semitones; minus 31; minus 34 and,
minus 36. This mutation has the purpose of solving harmonic
errors that may occur in the detection of the possible notes,
since the detection only selects notes from the most prominent
spectral peaks. Timbre change mutation happens to change
the instrument that plays a given note. This mutation exists to
improve the support of other kind of pitched instruments.

1) Spectral Envelope Modeling: The chosen mutations for
this chromosome are changing the gain of a harmonic by a
random value in the range [ 12, 12] dB and changing the in-
harmonicity deviation using a bin value in the range [ 3, 3].
The gain for F0 and its inharmonicity deviation are always 0
since they are not coded in the chromosome.
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2) Noise Level Estimation: The mutation may occur in each
gene and changes the power magnitude of the corresponding bin
by a value in the range [ 3, 3] dB.

F. Initialization

According to our previous results [19], the initial population
has two major contributions to the end result. First, if the initial
population is created nearer (or even half way) to the final result
than a randomly generated initial population, the genetic algo-
rithm will need a much smaller number of generations to achieve
the target result. Nevertheless, it is also important to have a very
heterogeneous initial population to allow a better exploration of
different areas of our search space.

The first step to get good results is to find a way to create an
initial population somehow based on the original audio signal.
Although the authors are aware that the initial population could
have been based on cepstrum [31], they chose to base it on the
major peaks of the spectrogram. This happens to ensure that the
genetic algorithm has enough biodiversity (genetic material) to
perform the search process. The main power behind genetic al-
gorithms relies on the capability of selecting the best parts of
each candidate solution and recombining them into fitter and
fitter solutions, something which requires a more heterogeneous
population [32]. Thus, for the starting population, each indi-
vidual is created with a random number of notes selected from
the previously generated list of possible notes (see Appendix A).
After its creation, each individual suffers ten forced mutations.

Although the initialization stage depends on the spectral peak
picking to determine the list of possible notes, the lack of fre-
quency resolution does not hinder the accurate peak picking at
the low frequencies, and thus does not affect the estimation of
those notes. During the selection of possible notes stage, the

most prominent peaks are selected from the original spec-
trum and then, for each peak, the corresponding musical notes
are added to the list of possible notes (see Appendix A). This
process takes into account that each bin (specially on lower fre-
quencies) might correspond to several musical notes and, if it is
the case, all those notes are added to the possible notes list. This
way, even with low frequency resolution, we assure that at least
the correct note is added to the list of possible notes. Therefore,
the algorithm is able to choose the correct note from the set of
candidates. Moreover, since we are selecting the most promi-
nent peaks, there is a high probability of selecting harmonically
related notes of the correct ones. If this is the case, the harmonic
change mutation will fix those notes.

Tests were also performed using the cepstrum for this
process, but the experiments have shown that despite having
several individuals that are harmonically related, the genetic
algorithm performs better when the initial population is based
on the spectrogram.

G. Survivor Selection

During recombination, each pair of individuals generates two
offsprings. This leads to an overcrowded population. The sur-
vivor selection operator chooses which individuals should or
should not pass to the next generation. The chosen selection
method consists in determining the best individuals for survival.
Also, 5% of the new generation consists on copies of the best

individual of the previous generation, each with one forced mu-
tation. This extends the robustness of the genetic algorithm, im-
proving the global search by using local search on the vicinity
of the best achieved solution [33].

V. HILL-CLIMBER

Algorithm 2 Hill-Climber

1: ���� individual returned by the genetic algorithm

2: ����������� ���� ��	
�	���������

3:

4: while � ���� ������������ do
5: ��� ����

6: change ��� ����� � duration by 50 ms

7: if ��� ����� � now overlaps with another note then
8: merge both notes

9: end if
10: �� ��� ��	
�	���������

11: if �� ����������� then
12: ���� ���

13: ����������� ��

14: else
15:

16: end if
17: end while
18: return MIDI file

The algorithm of the Hill-Climber (see Algorithm 2) consists
of the following steps: transversing all musical notes and, for
each note, increasing its duration by 50 ms. If this note now
overlaps with another note both notes are merged. Also, if the
quality of the individual improves, this process is then repeated
on the same musical note; otherwise, the last change is discarded
and the algorithm goes for the next musical note.

The output of the system is the result achieved by the hill-
climber. The impact of the Hill-Climber on the overall results is
studied in Section VI-D.

VI. EXPERIMENTS AND RESULTS

A. Implementation and Tuning

The proposed approach is implemented using the C program-
ming language. The transcription of each audio segment is run
in parallel (one thread per segment). The computational time of
the approach is 60 real time. Several tests were carried across
a selection of audio files, including a development database
of 2700 mixtures from seven different pianos, with polyphony
levels from 2 to 7. Those same tests employed various frame
lengths, window functions and hop sizes. A 93-ms frame length
with Hamming window function and 75% hop size were chosen
empirically. is used for generating the possible notes
list (see Appendix A) and the number of harmonics for the
spectral envelope modeling was also empirically set to 20. The
algorithm was also set to a 5 limit polyphony since polyphony
levels in musical recordings have a 4.5 average polyphony and a
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Fig. 5. (a) Multi-pitch estimation results for each polyphony on 2.700 random-pitched chords. (b) Multi-pitch estimation results for each polyphony on 5.160
common chords.

TABLE I
GENETIC ALGORITHM PARAMETERS

3.1 standard deviation reported for a number of classical music
pieces [34, p. 114]. The probabilities and other parameters
specific to the Genetic Algorithm are shown in Table I.

Although the resolution of 10.76 Hz might not appear enough
for discriminating notes starting at MIDI note A0 (25.500 Hz),
it suits their spectrum comparison. Recall that the algorithm
searches for the best combination of notes by performing an
evaluation based on their spectrum comparison with the orig-
inal audio. Thus, same musical notes have similar harmonic
locations, even if played by different pianos. Therefore, and
that is also the case for lower notes, the algorithm tends to
choose the correct piano samples because they correlate best
with those played in the original audio. In fact, the algorithm
is capable of identifying and discriminating notes from the 21
MIDI note (A0-27.500 Hz) to the 108 MIDI note (C8-4186.0
Hz). Also, the comparison between the original audio and the
individual’s audio is made on the frequency domain, frame by
frame. A frame overlap ratio of 25% means less STFT frames
and, therefore, fewer comparisons, which in turn means having
fewer mathematical calculations that consequently computa-
tionally accelerate the algorithm. Moreover, less STFT frame
comparisons mean fewer errors in the signal comparison that
might occur due to spurious components or harmonic cancella-
tion, which ultimately leads to a faster conversion of the genetic
algorithm, hence better results. Even though it might occur an
amplitude modulation during overlap-add, it will happen on
both signals being compared therefore, so it will not affect the
comparison.

B. Evaluation

The proposed algorithm has been tested on a database called
MAPS [27], [34] consisting of around 10,000 piano sounds ei-
ther recorded by using an upright Disklavier piano or gener-
ated by several virtual piano software products based on sample
sounds. The development set and the test set are disjoint. A
set of 2,700 random chords between A0 (25.500 Hz) and C8
(4186 Hz) with polyphony levels ranging from 2 to 7 were used
in the former while the latter comprises 2700 random chords and
5160 common chords from western music (major, minor, etc.)
from C2 (65.406 Hz) to B6 (1975.5 Hz). For each sound, a single
93ms-frame located after the last onset time is extracted and an-
alyzed. In total, 10 560 audio files were used from two upright
pianos and five grand pianos. The authors considered only the
frame after the last onset for both training and test tasks because
both tasks consisted in transcribing simple chords and also due
to time restrictions since there were used a total of 10 560 dif-
ferent chords. During all other tests, the algorithm performs a
frame by frame analysis.

General results are presented in Fig. 5. Relevant items are de-
fined correct notes after rounding each F0 to the nearest half-
tone. Typical metrics are used: the recall is the ratio between
the number of relevant items and of original items; the preci-
sion is the ratio between the number of relevant items and of
detected items; and the F-measure is the harmonic mean [35]
between the precision and the recall. In this context, our system
returns F-measures of 84%, 79%, 74%, 73%, 69%, and 65% for
polyphony 2, 3, 4, 5, 6, and 7 on random chords and 84%, 84%,
81%, and 78% for polyphony 2, 3, 4, and 5 on common chords.
Moreover, the precision is high for all polyphony levels whereas
the recall is decreasing whenever polyphony increases.

The ability of the system to infer the polyphony levels (inde-
pendently of the pitches) is presented on Fig. 6. For polyphony
levels from 2 to 5 the system only fails on detecting the cor-
rect polyphony level on polyphony 4 on the random chords
data set. Polyphony levels of 6 and 7 obviously fail because the
system is set to a maximum 5 polyphony. On the other hand, the
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Fig. 6. Distribution of estimated polyphony for the polyphony from 2 to 7 on (a) random-pitched chords and from 2 to 5 on (b) common chords. The title of each
subfigure indicates the correct polyphony; the �-axis represents the estimated polyphony; the �-axis represents the percentage of the estimated polyphony among
all instances. The peaking at the correct polyphony is observed for polyphony below six, except for four.

system successfully detects the correct polyphony for all poly-
phonies in the common chords data set. Also, F-measure values
are between 6% and 10% better for common chords than for
random-pitched chords. This suggests that, while the algorithm
faces more harmonically related notes in common chords (spec-
tral overlap), widely-spread F0s in random chords are a bigger
difficulty. By limiting the algorithm polyphony to 5, the pro-
posed system underestimates the polyphony level since the pa-
rameter tuning consists in optimizing the F-measure on the de-
velopment set. This objective function could have been changed
to take the polyphony level balance into account. This would
result in reducing the polyphony underestimation trend. How-
ever, the overall F-measure would decrease. Moreover, from a
different perspective, it has been shown that a missing note is
generally less annoying than an added note when listening to
a resynthesized transcription [36]. Thus, underestimating the
polyphony may be preferable to overestimating it. Still, this
trend turns out to be the main shortcoming of the proposed
method, and should be fixed in the future so it can efficiently
address sounds with polyphony higher than 5 notes.

While the test database has seven different pianos, the internal
synthesizer of the algorithm consists only of three pianos, which
means that the spectral envelope modeling plays a major role in
the achieved results by adapting the internal piano samples to the
seven pianos on the database. Moreover, the results are compa-
rable from one piano to another, with only a small % deviation.
This means that the results do not significantly depend on the
upright/grand piano differences.

C. Comparison With Other State-of-the-Art Algorithms

For a deeper analysis, we decided to extend a previous study
performed by Emiya [26]. This study compares several state-of-
the-art music transcription algorithms: [26], [37], [38], and [39].
We included four new algorithms: [21], [40], [41]2 and the pro-

2The authors asked to several researchers in the field for their algorithms
so that they could also be included in this study. These were the algorithms
provided.

posed method. In total, our algorithm is compared to seven other
state-of-the-art transcription algorithms:

• Vincent’10 [40];
• Reis’09 [21]
• Emiya EUSIPCO’08 [26];
• Vincent B’07—The baseline method presented in [37];
• Vincent H’07—The harmonic method presented in [37];
• Bertin’07 [38];
• Marolt’04 [39];
• Ryynänen’05 [41]—The authors thought that the inclusion

of this algorithm was very important for the study per-
formed since this algorithm won the last MIREX [42], [43]
competitions.

Reis’09 [21] was included for comparison because we be-
lieve it is the best algorithm of all previous genetic algorithm
approaches: Garcia algorithm [15] does not take into account
onset time and offset time, Lu’s approach [16] and Reis and
Fernandez’s algorithm [18] are limited to simple mathematical
models (e.g., sawtooth wave, rectangle wave, sine wave) and
for Reis et al. [19], although it applies the first genetic algo-
rithm approach to music transcription using real audio record-
ings, it lacks a means to deal with harmonic overfitting. Also,
Reis et al. [20] and [21] are essentially the same algorithm, ex-
cept that the latter approach was extended to multi-timbre. This
way, we can see how our proposal performs when compared
to the previous best genetic algorithm approaches to automatic
music transcription.

These algorithms were run on nine randomly chosen pieces of
music used on Emiya benchmark [26]3 All the results that will
be presented on this paper are available at the author’s website4.
Along with these results we also provide the audio files and their
MIDI representation in visual form.

Fig. 7(a) shows the results obtained by our algorithm in
comparison to the other seven state-of-the-art algorithms and
(B) shows the Friedman Mean Ranks with regard to F-measure

3see: http://www.irisa.fr/metiss/vemiya/EUSIPCO08/bench0.html
4http://www.estg.ipleiria.pt/~gustavo.reis/benchmark
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Fig. 7. (a) Onset-only F-measure, Precision, Recall, and Mean Overlap Ratio, respectively. (b) Friedman Mean Ranks with regard to F-measure on individual files.

on individual files. Results in Fig. 7(a) are presented using the
onset-only metric. In this metric a correct note implies a correct
onset with a deviation up to 50 ms. Results are presented on the
onset-only metric as Recall, Precision, F-measure, and Mean
Overlap Ratio (MOR) [41]. Mean Overlap Ratio is an averaged
ratio between the length of the intersection of the temporal
supports of an original note and its transcription, and of the
length of their union. This measure acts more like a guideline
for researchers to know how the correctly transcribed notes
intersect with the original notes in terms of note duration. It is
also used to measure the phrasing similarity with the original
piece.

Performance rates on Fig. 7(a) have been averaged with re-
spect to all tested musical pieces, and the respective standard de-
viation is also represented. While we have achieved low F-mea-
sure deviation on the evaluation of audio chords (multi pitch
estimation), on the automatic transcription benchmark we have
a deviation around 15%, no matter the method. This happens
because in the chord evaluation we used isolated frames com-
posed of one chord, while here the evaluation implies several
other difficulties, like having asynchronous notes overlapping
in time, detecting onsets, estimating the end of damping notes,
dealing with reverberation queues and so on. Thus, large stan-
dard deviation values are due to the dependency of musical ex-
cerpts. For instance: F-measure greater than 85% is reached on
musical pieces with slow tempo or low polyphony, while fast
pieces are generally difficult to transcribe. Since the results dra-
matically depend on the database, this was the main reason why
we decided to extend a previous study. This way we can have a
more realistic comparison among all tested algorithms.

In this context [Fig. 7(a)] our system is comparable to the
state-of-the-art: it ranked the 2nd place, below Marolt’04 and
above Emiya’08. It should be noted that Emiya’08 is the al-
gorithm with higher Mean Overlap Ratio, which suggests that
the used HMM framework for note tracking is efficient in both

selecting pitches among candidates, and also in detecting their
possible endings.

Regarding the proposed approach and Reis’09, both algo-
rithms have large differences in F-Measure (20%), Precision
(32%) and Mean Overlap Ratio (25%) and a small difference on
Recall (6%). The large F-Measure difference (20%) shows that
the proposed system has much better performance than the pre-
vious genetic algorithm approaches. It also features a smaller
percentage of both false positive rate and false negative rate
(Precision and Recall). Note that there is also a considerable
difference on Mean Overlap Ratio (25%). This means that our
system results in a more efficient transcription, enhancing the
phrasing similarity with the original pieces and thus improving
the subjective quality when hearing the correctly transcribed
notes. The computation time of Reis’09 algorithm is 540 times
real-time which is much higher than the proposed method: 60
times real-time. This also represents a significant improvement.
Also, the most significant difference between both algorithms
relies on Precision (32%). This shows that the adaptive spectral
envelope modeling, along with the dynamic noise level estima-
tion, play a major role in reducing the false positive rate: preci-
sion is the percentage of the transcribed notes that are correctly
transcribed. Thus, the proposed algorithm is much more effec-
tive on reducing the harmonic overfitting. On the other hand, a
lower difference on Recall tells us that both systems have a sim-
ilar false negative rate, which again emphasizes that the main
difference on both systems is on how the dynamic noise level
estimation, along with the adaptive spectral envelope modeling,
have a significant impact on reducing the false positive rate:
this system is much more effective in dealing with the harmonic
overfitting.

Fig. 7(b) shows that the proposed approach achieves the
second best the mean rank, which means that, on average, our
system ranked second place in each individual file. Table II
shows the Tukey–Kramer Honestly Significant Difference
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Fig. 8. (a) Onset–offset F-measure, precision, recall and mean overlap ratio, respectively. (b) Friedman mean ranks with regard to F-measure on individual files.

TABLE II
TUKEY–KRAMER HSD (HONESTLY SIGNIFICANT DIFFERENCE)

MULTI-COMPARISON ONSET-ONLY METRIC

(HSD) multi-comparison of the Friedman Mean Ranks calcu-
lated on Fig. 7(b). This table shows that the difference between
the proposed system and the algorithm that ranked first is not
statistically significant. Moreover, on this metric, our proposal
is significantly better than Reis’09 (best algorithm of all pre-
vious genetic algorithm approaches) and Bertin’07.

Fig. 8(a) shows the same benchmark using the Onset-Offset
metric. This metric also presents the results as Recall, Precision,
F-measure, and MOR. In the onset–offset metric a correct note
implies a correct onset with a deviation up to 50 ms and a correct
offset with a deviation of up to 20% of the note length or 50 ms.

Performance rates have also been averaged with respect to all
tested musical pieces, and the respective standard deviation is
also represented.

According to this metric, our system is also comparable to
the state-of-the-art: it ranked the 2nd place, below Emiya’08
and above Vincent’10. It should be noted that, in this context,
Emiya’08 is the algorithm with higher F-measure, Precision,
Recall, and Mean Overlap Ratio. This happens because it is
the most effective algorithm estimating the offset time, which
reinforces what was mentioned before: the HMM framework
used by Emiya’08 for note tracking is efficient in both selecting
pitches among candidates, and also in detecting their possible
endings. However, Emiya’08 algorithm has a computing time
of 200 times real-time while our system’s computing time is
60 times real-time. Fig. 8(b) shows that the proposed approach
achieves the fourth best mean rank, which means that, despite
having the second best overall mean on F-Measure, on av-
erage, our system ranked fourth place in each individual file.
Table III shows the Tukey–Kramer HSD multi-comparison of
the Friedman Mean Ranks calculated on Fig. 8(b). This table
shows that the difference between the proposed system and
the algorithm that ranked first is not statistically significant.
Moreover, on this metric, our proposal is significantly better
than Reis’09 and Bertin’07.

Finally, one last metric was employed for algorithm com-
parison: the Hybrid Decay/Sustain Score [44]. This metric was
employed because it is the one that best correlates with the
human hearing perception [44]. Fig. 9(a) shows the results ob-
tained using this metric. Results are presented as Decay Score,
Sustain Score, and Final Score: Decay Score is used for per-
cussive pitched instruments and employs a note oriented ap-
proach considering only pitches and onsets, generating a score
([0–100]%) for each note; Sustain Score is used for sustain mu-
sical instruments (e.g., woodwind) and employs a time oriented
approach measuring the overlap between the original and tran-
scribed notes; the Final Score is the average value between Sus-
tain Score and Decay Score.
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Fig. 9. Final Score, Decay Score, and Sustain Score, respectively. (a) DSS metric. (b) Friedman Mean Ranks.

TABLE III
TUKEY–KRAMER HSD (HONESTLY SIGNIFICANT DIFFERENCE)

MULTI-COMPARISON ONSET-OFFSET METRIC

According to this metric, the proposed system ranks the 1st
place, above Vincent’10. This means that our system results
in an efficient transcription, enhancing the phrasing similarity
with the original piece and thus improving the subjective quality
when hearing the correctly transcribed notes. Note that, since
we are dealing with piano transcriptions, we can consider the
value Decay Score instead of the Final score. In this case all
algorithms rank the same places (not the same results), except
Vincent’10. This happens because the latter algorithm has a rel-
atively high Sustain Score.

TABLE IV
TUKEY–KRAMER HSD (HONESTLY SIGNIFICANT DIFFERENCE)

MULTI-COMPARISON HYBRID DECAY/SUSTAIN METRIC

Fig. 9(b) shows that the proposed approach achieves the best
mean rank, which means that, on average, our system ranked
first place in each individual file. Moreover, Fig. 9(b) along with
Table IV shows that our proposal is significantly better than Vin-
cent B’07, Reis’09 and Bertin’07.

We believe that our approach has perceptually better results
because, among all the other state-of-the-art algorithms, our
system is the only one that tries to mimic the way how pro-
fessional musicians learn to play a new song by ear: the algo-
rithm “listens” to an audio file and then, during the transcription
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Fig. 10. (a) Contribution of each module to the global results of the proposed system—Onset–offset. (b) Friedman Mean Ranks with regard to F-measure on
individual files.

process, is always comparing the several candidates, to figure
out which one is closer to the original song. In the end, it re-
turns the transcription that most resembled the original audio.

D. Contribution of Each Module to the Overall Results

Fig. 10 shows the contribution of each module to the global
results of the proposed system: naïve, adaptive spectral envelope
modeling (ASEM), dynamic noise level estimation (DNLE),
both spectral envelope modeling and dynamic noise level es-
timation (ASEM+DNLE) and Hill-climber. Naïve corresponds
to the genetic algorithm without the spectral envelope mod-
eling and noise level estimation; ASEM is the naïve version
with the spectral envelope modeling; DNLE is the naïve version
with the dynamic noise level estimation; ASEM+DNLE corre-
sponds to naïve version with both spectral envelope modeling
and dynamic noise level estimation; and, finally, Hill-climber is
the ASEM+DNLE with the Hill-climber applied, i.e., the whole
system.

By analyzing Fig. 10 we can tell that the naïve (genetic
algorithm without hill-climber, spectral envelope modeling and
dynamic noise level estimation) has a performance of: 18.25%
F-measure, 18.25% Precision, and 18.5% Recall. By enabling
the adaptive spectral envelope modeling (ASEM), Precision,
F-Measure and Recall have an improvement around 1.75%:
ASEM by itself does not bring significant improvements on the
quality of the results since differences on spurious components
will bias the comparison (candidate evaluation), and thus, the
convergence of the genetic algorithm. On the other hand, if
we only enable the dynamic noise level estimation (DNLE),
F-Measure decreases 2.5%, Precision decreases 1.3% and Re-
call decreases 3.0%. This happens because the noise estimation
discards all the spurious information when evaluating the tran-
scriptions: only the spectral peaks above the noise threshold are
considered. This leads the algorithm on adding several notes

TABLE V
TUKEY–KRAMER HSD (HONESTLY SIGNIFICANT DIFFERENCE)

MULTI-COMPARISON ONSET-OFFSET METRIC

in harmonic locations to compensate the timbre differences,
decreasing both precision and recall.

Adaptive spectral envelope modeling along with dynamic
noise level estimation (ASEM+DNLE), improve the system’s
performance: F-measure increases 4.88% and Precision has
a boost of 6.5%. This tells that adaptive spectral envelope
modeling together with dynamic noise level estimation have
a great impact on reducing the harmonic overfitting: the per-
centage of correctly transcribed notes increases around 6.5%,
which means that the system significantly reduced the false
positive rate. Recall improves 3.38%. The algorithm performs
well because both ASEM and DNLE were designed to work
together so that they can compensate each-other.

Hill-Climber gives the major improvement to the proposed
system. It raises the performance of ASEM+DNLE by: 5.13%
F-Measure, 5.88% Precision and 4.88% Recall.

Fig. 10(b), along with Table V show that the contributions
made by Hill-Climber along with ASEM+DNLE are statisti-
cally significant: Hill-Climber with ASEM+DNLE are statisti-
cally better than the bare-bones GA, ASEM and DNLE.

The computing time of the proposed system is 60 times real-
time. However, the proposed system has several parallelization
capabilities since a separate genetic algorithm is run on each
audio segment. This way, the transcription task could be run on
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Fig. 11. F-measure, Precision, Recall, and Mean Overlap Ratio, using onset
detection and ground-truth information.

a separate CPU for each audio segment. Thus, we could have
one master CPU to apply onset detection and distribute the re-
sulting audio segments for several CPUs and wait for their re-
sults. Afterwards, the master CPU merges their results into one
whole transcription and applies the hill-climber.

E. Impact of the Onset Detector on the Overall Results

By taking into account that onsets are used as guidelines for
the segmentation of the input signal, the occurrence of false neg-
atives might have a considerable impact in the final results of the
event segregation. To evaluate the impact of the chosen onset de-
tection algorithm, the authors ran the same experiments using
the ground-truth onset information as the output of the onset
detector. Fig. 11 shows the comparison between the proposed
system using the implemented onset detector and using the ideal
onset detector.

The F-measure difference between using the ground-truth in-
formation rather than the onset detector is around 1%, which
means that the implemented onset detection has good perfor-
mance and does not have a significant impact in the proposed
system: the performance of the algorithm does not drop signif-
icantly.

VII. CONCLUSION AND FUTURE WORK

We have proposed a new approach for automatic transcrip-
tion of polyphonic piano music using genetic algorithms for
multi-pitch estimation and also for spectral envelope modeling
and dynamic noise level estimation. The transcription process
happens in three stages: first an onset detector is applied, so that
the audio can be separated in several audio segments; then, for
each segment, the genetic algorithm is applied to perform the
transcription of the corresponding audio segment; and, finally,
a hill-climber is applied to adjust note durations that cross mul-
tiple audio segments. The performance of the algorithm does
not drop significantly when compared to the usage of the ideal
onset detector. Nevertheless, since there is some decay in the
quality of the results, the user is able to use any other onset de-
tector and use its data as system input. Due to the fact that the

audio segmentation is based on onset information, the duration
of each segment is very short, which reduces the search space
of the genetic algorithm. Thus, 50 generations are more than
enough for the algorithm to find the appropriate solution. Each
candidate solution is encoded as a set of discrete note events
associated with a timbre and noise model. The evolution of
these two models aids the transcription process because it miti-
gates the spectral differences between different instruments. The
Hill-Climber, by adjusting the duration of the transcribed notes,
gives a major contribution to the quality of the results from the
perception point of view.

The performance of the method was measured using 7860
audio files and was also compared to the state-of-the-art. The
comparison was made using three different metrics: onset-only
(to measure the ability of detecting the F0s), onset-offset
(to measure the overlap between the original score and the
transcribed score) and, finally, Hybrid Decay/Sustain score
for an evaluation from the human hearing perception point
of view. The proposed method achieved satisfying results
when compared to other algorithms on all metrics: it ranked as
the best algorithm on the metric that best correlates with the
human hearing perception—Hybrid Decay/Sustain Score—and
it ranked as second best on both Onset-only and Onset-Offset
metrics. Also, when compared to previous genetic algorithm
approaches, the proposed system brings significant improve-
ments on both computation time and quality of the results.

Future work will focus on demonstrating the capabilities of
the proposed system on other kinds of pitched instruments (e.g.,
string ensemble, woodwind, etc.). Also, we intend to exploit the
parallelization capabilities of the proposed system to reduce its
computing time.

APPENDIX A
GET POSSIBLE NOTES

The function GetPossibleNotes generates a list of possible
notes and is described on Algorithm 3. This function analyzes
the power spectra of the acoustic signal and then returns the
list of possible notes: for each frame the biggest peaks are
selected, and then, for each peak, the corresponding MIDI notes
are added to the possible notes list. was empirically set to
10. The MIDI notes corresponding to the frequency bin are
those which verify the following equation:

��������
������	
��

(7)

where the �������� is the frequency of a MIDI note:

�������� � �� �
� ����
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and where the ������	
�� is the frequency bin resolution:
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Algorithm 3 Get Possible Notes algorithm.

Require spectrum , hop size

1: for each frame do
2: eliminate all non-peak values from current frame

3: for each peak in do { is a 2-order tuple
(magnitude, bin)}

4: { is the list of peaks}

5: end for
6: sort according to the power magnitude

7: first elements of

8: for each peak in do
9: ��������� first MIDI note belonging to bin

10: ��	���� first MIDI note belonging to bin

11: for � ��������� to ��	���� 
 do
12: ������� ���� �

13: ������� ���� � �

14: ������� 	������ �

15: for each in ������������� do
16: if overlaps with ������� then
17: ���� 	������ ���� 	������ �

18: else
19: ������������� ������������� �������

20: end if
21: end for
22: end for
23: end for
24: end for
25: return �������������

The peak-picking algorithm considers as a peak a local max-
imum, and only takes into account the previous and next bins
of the current bin. The algorithm does not perform any kind of
interpolation or spectrum whitening.
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