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Highlights
Grammar-Obeying Program Synthesis: A Novel Approach Using Large Language Models and
Many-Objective Genetic Programming
Ning Tao,Anthony Ventresque,Vivek Nallur,Takfarinas Saber

• LLMs are effective at generating correct programs for program synthesis tasks; however, they often fail to produce
programs that adhere to specified grammars.

• Five different LLMs were leveraged with a Similarity-Based Many-Objective G3P (SBMaOG3P) framework.
• The results on a well-known benchmark dataset demonstrate that SBMaOG3P is capable of finding correct programs

that obey the defined grammars, outperforming LLMs and the state-of-the-art G3P.
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A B S T R A C T
Program synthesis is an important challenge that has attracted significant research interest, especially
in recent years with advancements in Large Language Models (LLMs). Although LLMs have
demonstrated success in program synthesis, there remains a lack of trust in the generated code due to
documented risks (e.g., code with known and risky vulnerabilities). Therefore, it is important to restrict
the search space and avoid bad programs. In this work, pre-defined restricted Backus-Naur Form
(BNF) grammars are utilised, which are considered ‘safe’, and the focus is on identifying the most
effective technique for grammar-obeying program synthesis, where the generated code must be correct
and conform to the predefined grammar. It is shown that while LLMs perform well in generating
correct programs, they often fail to produce code that adheres to the grammar. To address this, a novel
Similarity-Based Many-Objective Grammar Guided Genetic Programming (SBMaOG3P) approach is
proposed, leveraging the programs generated by LLMs in two ways: (i) as seeds following a grammar
mapping process and (ii) as targets for similarity measure objectives. Experiments on a well-known
and widely used program synthesis dataset indicate that the proposed approach successfully improves
the rate of grammar-obeying program synthesis compared to various LLMs and the state-of-the-art
Grammar-Guided Genetic Programming. Additionally, the proposed approach significantly improved
the solution in terms of the best fitness value of each run for 21 out of 28 problems compared to G3P.

1. Introduction
Program synthesis seeks to streamline or automate pro-

gramming tasks by offering a set of techniques that enable
code creation from a high-level description of task objec-
tives (such as textual descriptions, input/output examples, or
sketches).

In recent years, Large Language Models (LLMs) have
demonstrated success in executing a variety of software
engineering tasks [42, 15, 17, 32, 41, 20], including program
synthesis from natural language prompt. However, the code
generated by LLMs often lacks trustworthiness and might
include documented risks. (e.g., code contains known and
risky vulnerabilities [1, 30]). The possibility of faulty LLM-
generated code poses a substantial and escalating threat
to software and its stakeholders. Additionally, the inherent
generative nature of LLMs limits their effectiveness in cor-
recting errors through iterative prompting [31, 14].

To limit the search space and exclude programs that
exhibit poor coding practices, use unreliable libraries or
functionalities, or deviate from the desired design pattern,
the definition of “safe” grammars is considered. This en-
sures that any generated program adheres to these grammars,
thereby mitigating security risks and enhancing code quality.

Defining “safe” grammars is a complex challenge by
itself that requires extensive research to design and validate
them for various tasks. However, our focus in this work
is on grammar-obeying program synthesis, which is the
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ability to generate correct programs that obey the specified
grammar.

In this work, it is demonstrated that although five well-
known LLMs (i.e., ChatGPT, Gemma, LLaMa, Mistral,
and Zephyr) are effective at generating correct programs
for program synthesis tasks, they frequently fail to produce
programs that adhere to specified grammars.

A study by Tao et al. [37] has shown that it is possible
to help improve LLMs’ performance at grammar-obeying
program synthesis by mapping their code to the predefined
grammar and evolving it using Grammar-Guided Genetic
Programming (G3P). While this approach brings some im-
provements, it only leverages one LLM-generated program
at a time as a seed–thus losing an important amount of
information.

Other works by Tao et al. [36, 35, 34] have shown that
G3P can be further improved by leveraging the similarity
of evolved programs to an “ideal” target code alongside the
input-output error rate. However, these studies were con-
sidered correct target codes obtained from a fictive oracle–
making them inapplicable in practice.

Tao et al. [33] demonstrated in their recent research that
integrating ChatGPT solutions with a grammar-mapping
process into a Many-objective G3P system can enhance the
performance of grammar-obeying program synthesis tasks.
However, relying solely on ChatGPT solutions as the initial
seed restricts the diversity of code structures.

In this work, a Similarity-Based Many-Objective Grammar-
Guided Genetic Programming (SBMaOG3P) approach is
proposed, which leverages programs generated by multiple
LLMs in two ways:
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• Leveraging the similarity towards the programs gen-
erated by 5 LLMs (i.e., ChatGPT, Gemma, LLaMa,
Mistral and Zephyr) in a many-objective approach.

• Leveraging the programs generated by the LLMs as
seeds to the evolutionary process (following a map-
ping to the predefined grammar).

The effectiveness of the proposed method has been as-
sessed by benchmarking it against the traditional G3P al-
gorithm introduced by Forstenlechner et al. [6], and the
latest algorithm for grammar-obeying program synthesis
developed by Tao et al. [33]. The results show that our
proposed approach found solutions for the majority of tasks
considered and outperformed the state-of-the-art algorithm.
However, in the default configuration, SBMaOG3P did not
outperform the LLM at generating solutions when grammar
constraints were ignored.

The structure of the paper is as follows: Section 2 pro-
vides a summary of the relevant background and related
work. Section 3 presents our novel SBMaOG3P approach.
The details of our experimental setup are described in Sec-
tion 4. Section 5 discusses the results of our experiments and
provides an analysis. Finally, Section 6 concludes the paper
and suggests directions for future research.

2. Background and Related Work
2.1. Genetic Programming

Genetic Programming (GP) is a type of evolutionary
algorithm designed to automate creation and optimisation
by repeatedly assessing their effectiveness in performing
specific tasks. GP aims to develop programs through the
evolution of a population of individuals. These individuals
initially comprise randomly chosen candidates, typically ill-
suited for the intended function. GP utilises genetic operators
inspired by natural processes, such as crossover, mutation,
and selection. Over time, a variety of GP systems have been
introduced, each with distinct characteristics (e.g., GP [13],
Cartesian GP [19], and Linear GP [3]).
2.2. Grammar-Guided Genetic Programming

G3P is a variant of Genetic Programming (GP) that
leverages BNF grammar to define the search space. Gram-
matical Evolution [23] and Context-Free Grammar Genetic
Programming (CFG-GP) by Whigham [39] are two well-
known representations of G3P algorithms. By introducing
grammar rules into the evolution process, the G3P algorithm
ensures the reliability of the generated solutions, which
are syntactically correct. This BNF grammar file is often
predefined with a problem set that is suitable for various
applications. It is widely utilised in automated program-
ming [21], transport system management [29], and wireless
communications scheduling [16, 26, 28, 27, 25]. However,
designing grammar for each problem limits the scalability of
the G3P algorithm.

In response, Forstenlechner et al. [5] designed an auto-
matic grammar construction approach for G3P, where one

BNF grammar design can be used for various problems. The
mechanism behind this automation involves designing short
grammars for each data type. The algorithm automatically
selects the appropriate grammar as long as the user provides
the data type for the problem. Another benefit of designing
short grammar for each data type is reducing the search space
by removing irrelevant grammar and reducing computation
costs and execution time. The authors [6] further extended
the grammar construction algorithm to include character
data types, which were previously handled as strings. In the
updated approach, they also introduced recursions, enriching
the diversity of grammar choices to tackle a wider range of
problems.
2.3. Large Language Models

Large Language Models (LLMs) are AI algorithms that
leverage extensive parameters and deep learning architec-
ture to understand and generate human language. They use
transformer-based neural networks to capture long-range de-
pendencies and contextual relationships within text. This ar-
chitecture, combined with techniques such as self-attention
mechanisms, has enabled LLMs to perform complex lan-
guage tasks with high accuracy and fluency.

LLMs can effectively tackle a wide range of real-world
problems, including programming, writing, and design [15,
17, 32, 41, 20]. Notable examples include AI chatbots like
OpenAI’s ChatGPT [22] and Google’s Gemini [18], which
use LLMs as their core technology.

ChatGPT [22] is one of the most powerful AI chatbots,
capable of generating human-like responses based on user
input. It can answer users’ questions using a large knowledge
corpus. Beyond simple queries, it can perform complex real-
world tasks such as writing emails, analysing and summaris-
ing text, processing pictures, and even programming.

LLMs can generate programs based on user intent. How-
ever, they often produce inaccurate code due to ambiguous
task descriptions and the complexity of programming tasks.
Wang et al. [38] enhanced the programming capabilities of
LLMs by leveraging BNF grammar as external knowledge
and incorporating domain-specific constraints. In their ap-
proach, they included grammar in the prompt that could
generate solutions for the given input-output examples while
keeping the grammar size minimal. This method allows
LLMs to generate programs more accurately by predicting
the appropriate grammar for new tasks. In this research, we
require LLMs to generate programs that adhere to predefined
BNF grammar rather than allowing the model to predict the
grammar to ensure accurate responses.
2.4. Program Similarity Assessment

Measuring code similarity is a critical task in program-
ming. It enables the identification of repetitive code, the
discovery of similar bugs in software development, and
plagiarism detection in assignment assessments [9]. This
research uses program similarity for fitness evaluation in
the SBMaOG3P algorithm. Four similarity measures, rated
highest in a survey by Ragkhitwetsagul et al. [24], were
selected.
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2.4.1. FuzzyWuzzy
FuzzyWuzzy [4] is developed based on the difflib library

for string searching. This library provides two similarity
functions for string matching named 𝑇 𝑜𝑘𝑒𝑛𝑆𝑜𝑟𝑡𝑅𝑎𝑡𝑖𝑜 and
𝑇 𝑜𝑘𝑒𝑛𝑆𝑒𝑡𝑅𝑎𝑡𝑖𝑜. The 𝑇 𝑜𝑘𝑒𝑛𝑆𝑜𝑟𝑡𝑅𝑎𝑡𝑖𝑜 function starts by
preprocessing the string, which involves removing punctu-
ation, converting the string to lowercase letters, and sorting
the tokens. It then uses the sorted tokens to generate a
similarity score. The 𝑇 𝑜𝑘𝑒𝑛𝑆𝑒𝑡𝑅𝑎𝑡𝑖𝑜 function differs by
processing the tokens without sorting them. Although this
library is designed for string matching, researchers have
found it very efficient for program similarity detection [24].
2.4.2. Cosine

The cosine similarity function is designed to calculate
the similarity between two vectors. This similarity measure
can be applied to program similarity calculation by tokenis-
ing the programs into vectors. The steps for performing
cosine similarity calculation between two programs are as
follows:

• Preprocessing and tokenisation: The programme is
split into tokens, removing irrelevant formatting sym-
bols.

• Construct Frequency Vector: Iterate through the
tokens generated in the previous step to create a token
frequency vector for each program.

• Similarity Score Calculation: The similarity be-
tween two programmes is calculated using Eq. 1. In
this equation, the token frequency vectors from the
previous step are denoted as vectors 𝐀 and 𝐁.

cos(𝐀,𝐁) = 𝐀 ⋅ 𝐁
‖𝐀‖‖𝐁‖

=
∑𝑛

𝑖=1 𝐀𝑖𝐁𝑖
√

∑𝑛
𝑖=1 (𝐀𝑖)2

√

∑𝑛
𝑖=1 (𝐁𝑖)2

(1)

2.4.3. CCFinder
CCFinder is a token-level code clone detection tool

designed by Kamiya et al. [12]. It processes the programme
using the following steps to identify code clones: (i) Lex-
ical Analysis: The programme is tokenised by applying
language-specific lexical rules. (ii) Transformation: Each
token from the previous step is transformed into a standard
expression to enable the system to identify code clones
with diverse expressions. (iii) Clone Matching: The main
technique for identification leverages a suffix-tree matching
algorithm. (iv) Formatting: Each clone pair is formatted and
reported in this final step.

The tool is designed to identify code clones in large
source codebases. Considering that the programs for simi-
larity calculation in this research are fairly small, we applied
the following adjustments to meet our requirements.

• Since CCFinder reports code clones rather than pro-
viding a similarity score, the following equation (Eq. 2)
was introduced to calculate the similarity score of the

identified clones. In this equation, the length of the
cloned code is divided by the length of the source code
to generate the similarity score.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =
𝐿𝑒𝑛(𝐶𝑙𝑜𝑛𝑒(𝑎, 𝑏))

𝑀𝑎𝑥(𝐿𝑒𝑛(𝑎), 𝐿𝑒𝑛(𝑏))
(2)

here 𝐶𝑙𝑜𝑛𝑒(𝑎, 𝑏) denotes the longest code clone be-
tween two programs 𝑎 and 𝑏, while 𝐿𝑒𝑛(𝑎) denotes
the length (i.e., number of characters) of the program
𝑎.

• This research simplified the suffix-tree matching al-
gorithm by calculating the common token length be-
tween two code snippets using a two-dimensional
token matrix. Each dimension represents the token
sequence of the program.

• The code clone reporting step is removed as only the
similarity score is needed for this research.

2.4.4. SIM
Gitchell et al. [8] proposed a plagiarism detection tool

called SIM, designed for detecting plagiarism in C program-
ming course assignments. The tool utilises a string alignment
algorithm at the token level to detect similar code structures.
The advantage of the string alignment technique is that it
can identify similar code even if the programme sequence
has been locally modified.

The tool identifies plagiarism using the following steps:
(i) splitting the programme into tokens and (ii) detecting
similarity using an alignment algorithm. The tokenisation
step involves lexical analysis to retain fundamental pro-
gramme parts such as keywords, identifiers, literals, and
operators while removing meaningless structural symbols.
The alignment algorithm divides the second token sequence
into multiple segments and uses each segment to align with
the first token sequence to calculate the similarity score.

3. Proposed Approach
This study focuses on addressing grammar-obeying pro-

gram synthesis problems by producing correct programs that
adhere to a BNF grammar, thereby restricting the code’s
structure and the available functions, methods, and libraries.

We propose (i) prompting several LLMs to generate
programs based on a task description, (ii) mapping the
program generated by the LLMs to programs that adhere
to a predefined BNF grammar, (iii) feeding the mapped
programs as a seed to our SBMaOG3P evolutionary process,
and (iv) performing the SBMaOG3P evolutionary process
which uses similarity measures towards the initial programs
generated by LLMs as secondary objectives to guide the
search process. All the data and algorithms used in this
research, as well as the tools to run the experiment, are
available online1.

The overview of our proposed approach is shown in
Figure 1. Our approach involves prompting 5 LLMs (i.e.,

1https://github.com/TonBatbaatar/SBMaOG3P
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ChatGPT, Gemma, LLaMa, Mistral and Zephyr) to generate
programs based on the provided textual description, and
then mapping each of these programs into the predefined
grammar. Additionally, our approach expands the G3P algo-
rithm through (i) the seeding of the grammar-mapped LLM-
generated programs into SBMaOG3P’s initial population
and (ii) the utilisation of diverse code similarity measures
(as secondary objectives) with input-output error rate (as the
primary objective) to guide the evolution.

Figure 1: Overview of Our Approach

3.1. LLM Code Generation
LLMs demonstrate exceptional abilities in generating

code based on user-provided prompts. Five popular LLMs
(ChatGPT, Gemma, LLaMa, Mistral, and Zephyr) are utilised
to generate code snippets in two different ways: First, by
providing only textual task descriptions, and second, by
including the task description along with the BNF grammar.
Given the high success rate observed in generating code for
benchmark problems, the LLMs were queried once for each
problem using the default temperature settings.

A recent study highlights the substantial impact of input
prompt quality on the effectiveness of LLMs [7, 40]. To en-
sure the quality of the generated code, two different prompt
templates were defined, each following a structured prompt
template, as shown below. Prompt Template 1 instructs the
LLM to generate a program based on the task’s textual
description, whereas Prompt Template 2 provides the LLM
with the required grammar alongside the task description.

Prompt Template 1: Task Only
Main task: Write a Python function without com-
ment, explanation, and example usage.
Task description: {input_task_description}
Output program format: Function parameter name
has to be in0, in1...(depends on how many param-
eters it needs), and return variable name has to be
res0, res1...(depends on how many parameters it
needs).

Prompt Template 2: Task with Specified Grammar
Main task: Write a Python function without com-
ment, explanation, and example usage.
Task description: {input_task_description}
Output program format: Function parameter name
has to be in0, in1...(depends on how many param-
eters it needs), and return variable name has to be
res0, res1...(depends on how many parameters it
needs).
Output program grammar: {in-
put_task_BNFgrammar}

For Prompt Template 1, we start with the Main task,
outlining the general goal of the query. Following this, the
Task description section provides a detailed description of
each task. Finally, the Output program format includes ad-
ditional structural information to format the output program
for our experiment. Building on Prompt Template 1, Prompt
Template 2 incorporates the specified BNF grammar in the
Output program grammar section.

Note that although two prompt templates were defined,
based on the experimental analysis, which indicates the
weakness of LLMs when specifying the required grammar
in the prompt (as detailed below), Prompt Template 1 is used
in the proposed approach.
3.2. Similarity-Based Many-Objective G3P

In this research, a similar Many-Objective G3P algo-
rithm, proposed by Tao et al. [36], is utilised with the goal
of guiding the search towards programs that are structurally
similar to a target code. However, in our approach, instead
of providing a unique target program provided by a fictive
oracle for similarity calculation, we use programs generated
by five distinct LLMs. The ability to leverage multiple target
codes from diverse LLMs makes our algorithm scalable to a
wider range of problems – taking advantage of the ability
that some LLMs have at synthesising programs to some
specific tasks while alleviating their limitations on others.

Figure 2 shows the overview of SBMaOG3P. In ad-
dition to evaluating input-output error rates, our approach
incorporates code similarity measures with LLM-generated
code as secondary objectives. We considered four different
similarity measures described in Section 2 for our system.
Our algorithm evaluates a program within the population
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Figure 2: Overview of SBMaOG3P

using five fitness functions: one primary error-based objec-
tive and four similarity measures. The algorithm selects the
highest similarity score value for each similarity measure
by comparing it against the programs generated by the five
different LLMs. However, our approach extends beyond
mere correctness evaluation. By introducing code similarity
measures as secondary objectives, our aim is not solely
to identify the correct solution but, more importantly, to
strategically steer the search process towards more plausible
program candidates.

Although SBMaOG3P uses multiple objectives to evolve
population programs, our method considers a task solved
by an individual only if it meets the primary objective.
Specifically, the individual must correctly pass all test cases
for the assigned task.

In this research, the tournament selector was adapted to
handle multiple objectives, enabling the algorithm to evolve
programs based on diverse criteria. During the selection of
parents for the next generation, the standard G3P algorithm
is followed for half of the individuals, with parents chosen
based on the input/output error rate. For the other half, one
parent is selected using the primary objective (error rate)
and the other using a secondary objective (code similarity).
Since there are four different similarity measures used as
secondary objectives, these measures are evenly rotated
through when selecting parents.

Deciding which individuals will survive through evolu-
tion is a crucial aspect of our algorithm. Similar to the parent
selection mechanism, we take all objectives into account
during this phase. The primary objective determines the
survival of half of the population, while the remaining half
is decided based on the four similarity measures.
3.3. Seeding LLM Solutions to SBMaOG3P

In our SBMaOG3P approach, individual programs are
represented as symbolic expression trees. Each node in
the tree corresponds to a specific code segment, and the

connections between nodes capture the structural informa-
tion. The seeded programs must follow the same grammar
rules and maintain the same tree structure to enable their
evolution by SBMaOG3P (i.e., need by genetic operators
such as crossover, mutation, and selection to function cor-
rectly). Therefore, to seed LLM-generated programs in SB-
MaOG3P, they must first be adapted to fit the predefined
grammar.

Specifying the BNF grammar in the LLM prompt (using
Prompt Template 2) reduced the success rate of LLMs at
producing correct programs. The LLM often generated code
that did not address the problem description and included
snippets outside the defined grammar (see results below for
details). In response, LLM-generated code was seeded using
task-only prompts (i.e., Prompt Template 1). A grammar
mapping algorithm, proposed in [37], was used to transform
programs into ones that adhere to predefined grammars,
enabling the structured evolution of LLM-generated code.

The grammar mapping algorithm starts by generating an
Abstract Syntax Tree (AST) [2] of the provided program.
Then, it maps the AST into a symbolic expression tree
for SBMaOG3P, starting from the root node and iterating
through its child nodes, and constructing the output program
recursively. For each tree node, when there is no grammar
conflict, the algorithm constructs the output tree. Otherwise,
it builds output with a dummy expression, which can be fur-
ther improved by the genetic programming process during
evolution. It also maps the variables and constants. When the
node is a variable “Name”, the mapping algorithm checks if
it has previously been mapped, in which case, it maps it to
the same one. If the variable “Name” has not been previously
mapped, the algorithm maps it using the first unused variable
name with the same data type.

During the mapping process, the LLMs-generated code
becomes erroneous code due to grammar conflict. In the next
step, we seed 5 grammar-mapped LLM-generated codes into
the SBMaOG3P’s initial population for further fixing. The
seeding process is demonstrated in the Figure 3.
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Figure 3: Overview of SBMaOG3P with Seeding

4. Experiment Setup
4.1. Research Questions

We evaluate the performance of our approach by at-
tempting to answer the following Research Questions (RQs):

• RQ1: How effective are LLMs at grammar-obeying
program synthesis?

• RQ2: Could we improve the performance of LLMs
at grammar-obeying program synthesis using SB-
MaOG3P?

4.2. Benchmark Dataset
Helmuth and Spector [11, 10] created a benchmark suite

for program synthesis problems, which contains 29 prob-
lems selected from introductory-level programming courses.
This benchmark suite provides detailed natural language
descriptions for each problem, as well as training and testing
sets. Four problems with its task description are shown in
Table 1. Table 2 indicates the number of train and test cases
for each problem. In this research, our proposed system is
evaluated with 28 problems from this benchmark suite. One
problem named “String Differences” is removed from our
experiment as in previous work by Forstenlechner [5]. The
original benchmark program tested with PushGP often prints
the result, whereas in G3P, the results are return values.
Consequently, the “String Differences” problem is excluded
because it requires multiple return values with different
data types that our grammar cannot accommodate. In this
experiment, the same grammar defined by Forstenlechner et
al. [5]2 is used.

Note that, since LLMs are being used, there is a risk that
the benchmark dataset may have already been included in
the training data of these models. However, this does not
pose a problem for our study. Even if the problems and their
corresponding code have been leaked, it is unlikely that the

2Available at: https://github.com/t-h-e/HeuristicLab.CFGGP/tree/

master/HeuristicLab.Problems.Instances.CFG/GrammarConstruction

Table 1
Description of Four Example Problems in the Dataset

Problem
Name

Description

Double Letters Given a string, print the string,
doubling every letter character, and
tripling every exclamation point.
All other non-alphabetic and non-
exclamation characters should be
printed a single time each.

Collatz Num-
bers

Given an integer, find the number
of terms in the Collatz (hailstone)
sequence starting from that integer.

Replace Space
with Newline

Given a string input, print the string,
replacing spaces with newlines. Also,
return the integer count of the
non-whitespace characters. The input
string will not have tabs or newlines.

String Lengths
Backwards

Given a vector of strings, print the
length of each string in the vector
starting with the last and ending with
the first.

grammars we use have also been leaked. This is evident
from our experiments, where we observe that most of the
LLM-generated code does not conform to the predefined
grammars. Therefore, while the generated code is often
interesting, it is not grammatically correct.
4.3. Generating Programs Using LLMs

Unlike PushGP, each individual in our SBMaOG3P al-
gorithm is a code snippet (i.e., a function) rather than a
complete program with a console output. The SBMaOG3P
algorithm evaluates each individual by calculating the fitness
value based on the function’s return value compared to the
expected output of the test case. However, the benchmark is
designed to output results to the console, which is unsuitable
for our experiment. Using such program descriptions as
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Table 2
Number of Train and Test Cases for Each Problem in the
Dataset

Name Train Test

Number IO 25 1000
Small Or Large 100 1000
For Loop Index 100 1000
Compare String Lengths 100 1000
Double Letters 100 1000
Collatz Numbers 200 2000
Replace Space with Newline 100 1000
Even Squares 100 1000
Wallis Pi 150 50
String Lengths Backwards 100 1000
Last Index of Zero 150 1000
Vector Average 100 1000
Count Odds 200 2000
Mirror Image 100 1000
Super Anagrams 200 2000
Sum of Squares 50 50
Vectors Summed 150 1500
X-Word Lines 150 2000
Pig Latin 200 1000
Negative To Zero 200 2000
Scrabble Score 200 1000
Word Stats File 100 1000
Checksum 100 1000
Digits 100 1000
Grade 200 2000
Median 100 1000
Smallest 100 1000
Syllables 100 1000

prompts for LLMs often results in programs with print

statements instead of function returns. To adapt the problem
descriptions to our needs, we modified them to specify that
the program should return a value from a function instead
of using a print statement. For example, we replaced the
keyword “print” with “return” in the task descriptions. The
modified problem descriptions are available online3.
4.4. Parameter Settings

All five LLMs (ChatGPT, Zephyr4, Mistral5, Gemma6
and LLaMa7) are used with the default temperature settings,
and the version of each LLM is detailed in Table 3. we
use the standard G3P parameter settings as used in previous
studu [5]. We ran the evolution for each program synthesis
task 30 times. The benchmark suite suggested using 300
generations for most tasks, while for straightforward syn-
thesis tasks (“Median”, “Number IO”, and “Smallest”), 200

3Available at: https://github.com/TonBatbaatar/SBMaOG3P/blob/main/

Problem_Edited.csv
4Available at: https://huggingface.co/HuggingFaceH4/

zephyr-orpo-141b-A35b-v0.1
5Available at: https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2
6Available at: https://huggingface.co/google/gemma-1.1-7b-it
7Available at: https://huggingface.co/meta-llama/

Meta-Llama-3-70B-Instruct

Table 3
Experiment Parameter Settings

Parameter Setting

Runs 30
Generation 300a

Population size 1000
Tournament size 7
Crossover probability 0.9
Mutation probability 0.05
Node limit 250
Variable per type 3
Max execution time (s) 1
ChatGPT version GPT4
Zephyr version zephyr-orpo-141b-A35b-v0.1
Mistral version Mistral-7B-Instruct-v0.2
Gemma version gemma-1.1-7b-it
LLaMa version Meta-Llama-3-70B-Instruct

a200 generations for “Median”, “Number IO”, and “Smallest” as
in [11]

generations are enough. Other settings for our SBMaOG3P
systems are indicated in Table 3.

5. Result
5.1. Effectiveness of LLM at Grammar-Obeying

Program Synthesis (RQ1)
The effectiveness of LLMs in grammar-obeying program

synthesis is analysed by comparing the selected LLMs and
G3P with tournament selection on benchmark problems. The
results are presented in Table 4. Each LLM is evaluated
twice: once using the task-only prompt and once using the
prompt with the task description and the specified BNF
grammar. For LLMs’ solutions, a regular checkmark (Ë)
indicates that the approach successfully solved the task using
the BNF grammar. A circle checkmark () signifies that the
approach solved the task using a grammar not permitted by
the BNF grammar. A cross symbol (é) indicates that the
approach failed to find a solution for the task. For the G3P
algorithm, a problem is marked with a regular checkmark
(Ë) if at least one correct solution is found within 100 runs.
Conversely, if the G3P algorithm fails to evolve a correct
solution within 100 runs, it is marked unsuccessful (é).

The experiment demonstrates that LLMs performed ex-
ceptionally well in the program synthesis task. At least one
LLM found correct solutions for 27 out of the 28 problems
considered. Only one problem, “Wallis Pi,” remained un-
solved, as the LLMs generated programs that calculate the
value of 𝜋

2 or 𝜋 instead of 𝜋
4 .
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Table 4
Comparison of LLMs and G3P on Benchmark Problems

Benchmark Problem G3P LLMs - Task Only LLMs - Task with Specified Grammar
ChatGPT Gemma LLaMa Mistral Zephyr ChatGPT Gemma LLaMa Mistral Zephyr

Number IO Ë Ë Ë Ë Ë Ë Ë é Ë é é
Small Or Large Ë   Ë Ë  Ë  Ë é
For Loop Index é   Ë  Ë Ë é Ë é
Compare String Lengths é      Ë  Ë é é
Double Letters é      Ë é  é
Collatz Numbers é  Ë Ë  Ë Ë é é é é
Replace Space with Newline Ë      Ë é  Ë Ë
Even Squares é         é é
Wallis Pi é é é é é é é é é é é
String Lengths Backwards Ë       é  é
Last Index of Zero Ë         é é
Vector Average é         é
Count Odds Ë Ë Ë   Ë  Ë Ë 
Mirror Image Ë    é     é
Super Anagrams é        é  é
Sum of Squares é      Ë é Ë é
Vectors Summed é       é Ë é é
X-Word Lines é      é é  é é
Pig Latin é  é       é
Negative To Zero Ë      Ë  Ë é é
Scrabble Score é  é  é   é Ë é
Word Stats é  é é é   é  é
Checksum é       é Ë Ë
Digits é é é  é é é é  é é
Grade Ë  Ë Ë Ë     é
Median Ë       é  é é
Smallest Ë        Ë  Ë
Syllables Ë  Ë    Ë é  Ë

Number of Problems Solved 12 2 (24) a 5 (19) a 5 (21) a 3 (20) a 4 (22) a 10 (15) a 1 (11) a 11 (14) a 3 (3) a 2 (14) a

a number in the bracket indicates the problem solved using a grammar not permitted by the BNF grammar
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The performance of the LLMs we tested is quite compa-
rable: ChatGPT, LLaMa, and Zephyr each solved 26 prob-
lems, Gemma solved 24 problems, and Mistral solved 23
problems. However, the performance of LLMs on grammar-
obeying program synthesis varies significantly. All five
LLMs, when prompted with only the task description, solved
no more than five problems obeying the BNF grammar.
The ability to generate code obeying the BNF grammar
slightly improved for ChatGPT and LLaMa when using a
prompting template that included both the task description
and the specified grammar. We also observed that prompting
with grammar reduced the code quality and the number of
problems for which the LLMs generated correct solutions.
Therefore, we decided to seed the LLMs’ generated code
by mapping the grammar for the subsequent SBMaOG3P
experiments.

It is uncertain whether the impressive performance of
LLMs in program synthesis is due to the benchmark datasets
already being included in their training data. However, we
can assert that the grammar of these problems was not
leaked into the training set, considering that most LLMs
generate programs using grammar rules not permitted by
the predefined BNF grammar. Therefore, while LLMs are
proficient at program synthesis, they struggle with grammar-
obeying program synthesis. Solution programs obtained by
LLMs are available online 8.
5.2. Performance of Proposed Approach (RQ2)

Since the proposed approach combines several compo-
nents, its performance is assessed in two steps to identify
the contribution of each: (i) the performance of the grammar-
mapping algorithm and (ii) the performance of SBMaOG3P.
5.2.1. Performance of the Grammar Mapping

Algorithm
In this subsection, the performance of the grammar

mapping algorithm is analysed. All the code snippets gen-
erated by the LLMs were successfully mapped to code that
adheres to the BNF grammar. However, some information
was omitted due to grammar conflicts between the LLMs’
generated code and the predefined BNF grammar. Table 5
summarises each solution’s grammar mapping status for all
considered LLMs. When the algorithm is able to map the
LLMs’ generated code without any grammar conflict, we
mark the mapping process with a regular checkmark (Ë). If
there is minor information loss during the mapping process,
we indicate the mapping status with a circle checkmark
(). If the mapping retains minimal information from the
LLMs’ generated code due to significant grammar conflicts,
we mark it with a cross (é). The results show that the
solutions generated by ChatGPT and Zephyr are mapped
with relatively good information retention among the five
considered LLMs. The mapping performance for solutions
produced by Gemma is poor because it fails to meet the
required format in terms of code structure and the naming

8Available at: https://github.com/TonBatbaatar/SBMaOG3P

scheme of input parameters. By analysing the grammar-
mapped code, the grammar conflicts are summarised into the
following main categories:

• Wrong Code structure: The code for seeding re-
quires a fixed number of variables in the return state-
ment instead of using a function or expression directly
in the return statement.

• Violates Naming Scheme: The LLMs’ generated
code snippet must follow the naming scheme for the
function’s input parameters as specified in the prompt.

• Function/Library Mismatch: The LLMs’ generated
code often includes functions and libraries not defined
in the BNF grammar. Even for functions that are de-
fined in the BNF grammar, the number of parameters
often mismatches.

• Advanced Python Grammar: The LLMs often solve
the task using advanced Python grammar, such as
list comprehension, which is not defined in the BNF
grammar.

• Data Type Conflict: The data type that can be used for
each problem is defined within the problem’s gram-
mar. When LLM-generated code uses data types that
are not allowed for the current problem, the grammar
mapping algorithm cannot map them.

5.2.2. Performance of SBMaOG3P
The proposed approach was evaluated by comparing the

performance of three distinct G3P variants: (1) G3P with
tournament selection without seeding proposed by Forsten-
lechner et al. [5, 6], (2) the state-of-the-art grammar-obeying
program synthesis algorithm (named SBMaOG3P𝐶ℎ𝑎𝑡𝐺𝑃𝑇 )
proposed by Tao et al. [33], and (3) our proposed algorithm
(named SBMaOG3P5𝐿𝐿𝑀𝑠).SBMaOG3P𝐶ℎ𝑎𝑡𝐺𝑃𝑇 and SBMaOG3P5𝐿𝐿𝑀𝑠 both use
grammar-mapped seeds in the initial population and utilise
code similarity as secondary objectives. The main difference
between these two approaches is that SBMaOG3P𝐶ℎ𝑎𝑡𝐺𝑃𝑇seeds only one grammar-mapped code generated by Chat-
GPT and calculates the code similarity using the ChatGPT-
generated code as the target. In contrast, SBMaOG3P5𝐿𝐿𝑀𝑠seeds grammar-mapped programs generated by five LLMs
and calculates the similarity score by choosing the maximum
similarity value using the five target codes.

Each algorithm was run 30 times on the benchmark
dataset, and the number of successful runs is reported in
Table 6. A run is considered successful when the evolution
finds at least one correct solution that passes all training and
test cases.

Overall, the proposed SBMaOG3P5𝐿𝐿𝑀𝑠 performed the
best in both the number of solved problems and the success
rate. Specifically, the proposed approach solved 21 problems
while adhering to the predefined BNF grammar, which is 9
more problems solved compared to the G3P approach and 5
more problems compared to the SBMaOG3P𝐶ℎ𝑎𝑡𝐺𝑃𝑇 .
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Table 5
Grammar Mapping Status For LLM-generated code

Benchmark Problem ChatGPT Zephyr Mistral Gemma LLaMa

NumberIO Ë Ë Ë é Ë
Small Or Large Ë Ë  é Ë
For Loop Index Ë   é Ë
Compare String Lengths Ë é é é Ë
Double Letters Ë Ë  é Ë
Collatz Numbers Ë  é  Ë
Replace Space with Newline  Ë  é
Even Squares  Ë é é é
Wallis Pi Ë Ë  Ë
String Lengths Backwards é  é é é
Last Index of Zero    é é
Vector Average   é é é
Count Odds Ë é Ë Ë é
Mirror Image Ë  é é é
Super Anagrams é é é é é
Sum of Squares é Ë é é é
Vectors Summed é Ë  é é
X-Word Lines é é é é é
Pig Latin é   é Ë
Negative To Zero é Ë é é é
Scrabble Score é Ë é é é
Word Stats é é é é é
Checksum é Ë é é é
Digits Ë Ë é é é
Grade Ë Ë é é Ë
Median Ë é é é é
Smallest Ë é é é é
Syllables Ë é é é é

Number of informative map a 18 20 10 3 10
a Sum of mapping without information loss or minor information loss

While the proposed approach did not evolve correct
solutions for the program synthesis task as effectively as
popular LLMs, it excelled in grammar-obeying program
synthesis. Notably, by seeding grammar-mapped programs
generated using prompts without specifying grammar, our
approach successfully corrected LLM-generated solutions
that violated the grammar for 14 problems. Even compared
to the solutions generated by LLMs prompted with the task
description and the BNF grammar, our approach evolved
programs that fit the BNF grammar for 7 more problems.
However, it failed to address the unsolved problem (“Wallis
Pi”) in its default configuration.

The proposed approach evolved correct solutions for 21
problems, leaving 7 problems unsolved with the current
configuration. We further examined the reasons for each
unsuccessful problem.

• Wallis Pi: Although the seeded grammar-mapped
LLM code was close to the correct solution (generat-
ing code for calculating 𝜋

2 instead of 𝜋
4 ), the evolution

did not correct the code with its default settings. We
believe that increasing the computational power (i.e.,
increasing the number of generations) could enable
the evolution process to fix the erroneous code.

• Vector Average: For this problem, our proposed al-
gorithm did not gain helpful information from seeding
since all five LLMs’ generated codes utilised the Sum

function, which is not supported by the BNF grammar.
• SuperAnagrams: Similar to the previous problem, all

five LLMs’ seeds utilised advanced Python grammar
(i.e., list comprehension) to tackle this problem, which
is not allowed in the BNF grammar.

• X-word lines, Word Stats: A large grammar con-
flict involving the use of data types prevented our
algorithm from evolving a correct solution for these
two string analysis problems. Specifically, all LLMs’
solutions split the text using the Split function and
stored it in a list variable. However, the list variable
is not provided in the BNF grammar for these two
problems, and the Split function is defined within a
for loop that can not be used separately.

Tao et al.: Preprint submitted to Elsevier Page 10 of 13
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Table 6
Comparison of Proposed SBMaOG3P5𝐿𝐿𝑀𝑠 Against State-of-the-Art System – SBMaOG3P𝐶ℎ𝑎𝑡𝐺𝑃𝑇 , and G3P

Benchmark Problem G3P SBMaOG3P LLMs - Task Only LLMs - Task with Specified Grammar
ChatGPT 5 LLMs ChatGPT Gemma LLaMa Mistral Zephyr ChatGPT Gemma LLaMa Mistral Zephyr

Number IO 17 30 30 Ë Ë Ë Ë Ë Ë é Ë é é
Small Or Large 0 30 30   Ë Ë  Ë  Ë é
For Loop Index 0 30 30   Ë  Ë Ë é Ë é
Compare String Lengths 0 30 30      Ë  Ë é é
Double Letters 0 30 30      Ë é  é
Collatz Numbers 0 30 30  Ë Ë  Ë Ë é é é é
Replace Space with Newline 1 12 30      Ë é  Ë Ë
Even Squares 0 0 30         é é
Wallis Pi 0 0 0 é é é é é é é é é é
String Lengths Backwards 3 4 4       é  é
Last Index of Zero 6 30 30         é é
Vector Average 0 0 0         é
Count Odds 0 30 30 Ë Ë   Ë  Ë Ë 
Mirror Image 20 30 30    é     é
Super Anagrams 0 0 0        é  é
Sum of Squares 0 0 30      Ë é Ë é
Vectors Summed 0 0 30       é Ë é é
X-Word Lines 0 0 0      é é  é é
Pig Latin 0 0 30  é       é
Negative To Zero 1 3 30      Ë  Ë é é
Scrabble Score 0 0 0  é  é   é Ë é
Word Stats 0 0 0  é é é   é  é
Checksum 0 0 3       é Ë Ë
Digits 0 0 0 é é  é é é é  é é
Grade 0 30 30  Ë Ë Ë     é
Median 12 30 30       é  é é
Smallest 28 30 30        Ë  Ë
Syllables 0 30 30  Ë    Ë é  Ë

Number of Problems Solved 8 16 21 2 (24) a 5 (18) a 5 (21) a 3 (20) a 4 (22) a 10 (15) a 1 (11) a 11 (14) a 3 (3) a 2 (14) a

a number in the bracket indicates the problem solved using a grammar not permitted by the BNF grammar
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Table 7
The P-value for the Wilcoxon Rank Sum Test Using
Best Fitness of Each Run Comparing G3P and Proposed
SBMaOG3P5𝐿𝐿𝑀𝑠

Problem p-value

NumberIO 0.034843
Last Index of Zero 0.000751
Small Or Large 0.000062
Vector Average 0.143140
For Loop Index 0.000064
Count Odds 0.000064
Compare String Lengths 0.000033
Mirror Image 0.077872
Double Letters 0.000055
Super Anagrams 0.377587
Collatz Numbers 0.000063
Sum of Squares 0.000064
Replace Space with Newline 0.000224
Vectors Summed 0.000064
Even Squares 0.000064
X-Word Lines 0.795936
Wallis Pi 0.357296
Pig Latin 0.000064
String Lengths Backwards 0.018616
Negative To Zero 0.000228
Digits 0.000064
Scrabble Score 0.421242
Grade 0.000064
Word Stats 0.279861
Median 0.005943
Checksum 0.019464
Smallest 0.168078
Syllables 0.000064

• Scrabble Score: This problem assigns a score to each
letter in a string, with the scores stored in a list accord-
ing to the BNF grammar. Without providing the LLMs
with the format of how such a scoreboard is defined in
the grammar, their solutions can not generate a helpful
seeding program to handle the scoreboard. This makes
the seeding program inefficient in evaluating the cor-
rect solution.

• Digits: This problem requires splitting digits from a
given number. Similar to the “Wallis Pi” problem,
the LLMs’ seeds were close to the correct solution.
However, they failed to handle negative numbers,
which requires assigning a negative sign to the least
significant digit.

The Wilcoxon Rank Sum test was performed on the best
test fitness value (error-rated fitness value for SBMaOG3P)
from each run of G3P and the proposed approach to deter-
mine whether significant improvements in code generation
performance exist. Table 7 shows the result of the Wilcoxon
Rank Sum test. In the measurement, we used 0.05 as the
threshold for the significance level, and significant results
are highlighted in the table.

The proposed approach significantly improved the so-
lution in terms of the best fitness value of each run for
21 problems compared to G3P with tournament selection.
Surprisingly, we observed a significant improvement in the
“Digits” problem, even though the problem remained un-
solved with our approach. This further supports the idea that
higher computational costs (i.e., more generations and larger
population sizes) might improve the chances of solving the
problem.

6. Conclusion and Future Work
This study proposed SBMaOG3P, which leverages code

generated by five distinct LLMs (i.e., ChatGPT, Zephyr,
Gemma, LLaMa and Mistral) to tackle grammar-obeying
program synthesis tasks by evolving programs that are syn-
tactically correct and adhere to a BNF grammar. By restrict-
ing the grammar rules of the program, it is ensured that
the algorithm generates higher-quality programs without
security threats.

The proposed approach utilised LLM-generated code
in two ways: (i) leveraging the similarity to the programs
generated by LLMs and (ii) using the programs generated
by the LLMs as seeds for the evolutionary process, with the
grammar mapped to fit the BNF grammar.

A comprehensive evaluation of the proposed method was
conducted using the General Program Synthesis Benchmark
Suite 1. The experimental results indicate that the approach
successfully evolves accurate and grammar-compliant pro-
grams for various grammar-obeying program synthesis tasks,
outperforming the state-of-the-art grammar-obeying pro-
gram synthesis systems. However, there is still room for
improvement, as in its default setup, SBMaOG3P does not
achieve the success rate of LLMs when the grammar-fitting
constraint is disregarded.

In our future research, we aim to improve the grammar
mapping algorithm to support a wider variety of data struc-
tures, thereby maximising the use of grammar-mapped code
in the evolutionary process. We also plan to evaluate the
quality of the code generated by our approach. Additionally,
we intend to explore the impact of employing various multi-
objective optimisation algorithms within SBMaOG3P.
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