Multiobjective Genetic Algorithms for Multiscaling Excited-State Direct Dynamics in Photochemistry

Kumara Sastry¹, D.D. Johnson², A. L. Thompson³, D. E. Goldberg¹, T. J. Martinez³, J. Leiding³, J. Owens³

¹Illinois Genetic Algorithms Laboratory, Industrial and Enterprise Systems Engineering ²Materials Science and Engineering ³Chemistry and Beckman Institute University of Illinois at Urbana-Champaign

Chemical Reaction Dynamics Over Multiple Timescales

- Fitting/Tuning semiempirical potentials is non-trivial
- Energy & shape of energy landscape matter
 - Both around ground states and excited states
- Two objectives at the bare minimum
 - Minimizing errors in energy and energy gradient

Why Does This Matter?

Multiscaling speeds all modeling of physical problems:

- Solids, fluids, thermodynamics, kinetics, etc.,
- Example: GP used for multi-timescaling Cu-Co alloy kinetics [Sastry, et al (2006), *Physical Review B*]
- Here we use MOGA to enable fast and accurate modeling
 - Retain *ab initio* accuracy, but exponentially faster
- Enabling technology: Science and Synthesis
 - Fast, accurate models permit larger quantity of scientific studies
 - Fast, accurate models permit synthesis via repeated analysis
- This study potentially enables:
 - Biophysical basis of vision
 - Biophysical basis of photosynthesis
 - Protein folding and drug design
 - Rapid design of functional materials (zeolites, LCDs, etc.,)

GA Produces Physical and Accurate Potentials (PES)

- Significant reduction in errors
- Globally accurate potential energy surfaces
 - Resulting in physical reaction dynamics
- Evidence of transferability: "Holy Grail" in molecular dynamics

GA Optimized SE Potentials are Physical

- Dynamics agree with *ab initio* results
- Validates expermental results for both benzene & ethylene
- Example: cis-trans isomerization in ethylene
 - AM1, PM3, and other parameter sets yield wrong energetics
 - GA yields results consistent with AIMS and experiments

Human Competitive Claims: Criteria B, C, D, E

- Criterion B: The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed scientific journal.
- Criterion C: The result is equal to or better than a result that was placed into a database or archive of results maintained by an internationally recognized panel of scientific experts.
- Criterion D: The result is publishable in its own right as a new scientific result 3/4 independent of the fact that the result was mechanically created.
- Criterion E: The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better humancreated solutions.

Criterion B: Better Than Result Accepted As A New Scientific Result

- Current best published results
 - Journal of American Chemical Society (2nd), Journal of Chemical Physics (3rd), Journal of Physical Chemistry (4th), and Chemical Physics Letters (8th)
 - 13,417+ citations of top 10 papers
- Multiobjective GA results
 - Parameter sets with up to 277% lower energy error and 87% lower gradient error
 - Semiempirical potentials with results well beyond previous attempts, or expectation of human experts
 - Efficient and yields multiple potentials with accurate PES
 - * Up to 1000 times faster than current methods
 - Evidence of transferability
 - Enables accurate simulations of photochemistry in complex environments without the need for complete reoptimization.

Sources: Most frequently referenced in Chemical Abstracts. Web of Science

Criterion C: Better Than Result Placed Into a Database/Archive of Results.

- Standard semiempirical potentials:
 - AM1 (16,031+ cit.), INDO(4,583+ cit.), PM3 (4,416+ cit.), MNDO (1,919+ cit.), CNDO (1,120+ cit.)
 - Used in commercial software (MOLCAS, MOPAC, MOLPRO)
 - Globally inaccurate PES yields wrong chemistry
 - No evidence transferability, nor any physical insight
- Multiobjective GA results:
 - Globally accurate PES yields accurate chemistry
 - Never been obtained by any previous attempt at optimizing the semiempirical forms of MNDO, AM1, and PM3.
 - Evidence of transferability
 - * "Holy Grail" for two decades in chemistry & materials science.
 - Physical insight from Pareto analysis using rBOA and symbolic regression via GP.

Criterion D: GA Results are Publishable

- Paper at GECCO in Real World Applications track
 - Nominated for best paper award
- Preparing journal version highlighting new chemistry results the methodology revealed.
 - Target Journal: *Journal of Chemical Physics*
- Observed transferability is a very important to chemists
 - Enables accurate simulations without the need for complete reoptimization
- Pareto analysis reveals interactions between parameters
 - Semiempirical potentials have physical interpretability
 - Gave new insight into multiplicity of models and why they should exist.

Criterion E: GA Wins MacArthur "Genius" Award

Human created solutions:

 Todd Martinez is the recipient of the MacArthur "Genius" award for his work on "combining effective strategies for computing the quantum mechanical properties of complex molecules with a deep intuition for their underlying chemical behavior"

Multiobjective GA results:

- Parameters sets that are up to 277% lower energy error and 87% lower gradient error
- Interpretable semiempirical potentials
- Enables orders of magnitude (10²-10⁵) increase in simulation time even for simple molecules
- Orders of magnitude (10-10³) faster than the current methodology for developing semiempirical potentials

Why This is the "Best" Among Other Humies Submissions?

- Broadly applicable in chemistry and materials science
 - Analogous applicability when multiscaling phenomena is involved: Solids, fluids, thermodynamics, kinetics, etc.
- Facilitates fast and accurate materials modeling
 - Alloys: Kinetics simulations with *ab initio* accuracy. 10⁴-10⁷ times faster than current methods.
 - Chemistry: Reaction-dynamics simulations with *ab initio* accuracy.10²-10⁵ times faster than current methods.
- Lead potentially to new drugs, new materials, fundamental understanding of complex chemical phenomena
 - Science: Biophysical basis of vision, and photosynthesis
 - Synthesis: Pharmaceuticals, functional materials