
Acceleration of Genetic Algorithms for
Sudoku Solution on Many-core Processors

Yuji Sato, Naohiro Hasegawa and Mikiko Sato

Abstract In this chapter, we use the problem of solving Sudoku puzzles to demon-
strate the possibility of achieving practical processing time through the use of many-
core processors for parallel processing in the application of evolutionary computa-
tion. To increase accuracy, we propose a genetic operation that takes building-block
linkage into account. As a parallel processing model for higher performance, we
use a multiple-population coarse-grained genetic algorithm (GA) model to counter
initial value dependence under the condition of a limited number of individuals. The
genetic manipulation is also accelerated by the parallel processing of threads. In an
evaluation using even very difficult problems, we show that execution times of sev-
eral tens of seconds and several seconds can be obtained by parallel processing with
the Intel Core i7 and NVIDIA GTX 460, respectively, and that a correct solution
rate of 100% can be achieved in either case. In addition, genetic operations that take
linkage into account are suited to fine-grained parallelization and thus may result in
an even higher performance.

1 Introduction

Research on the implementation of evolutionary computation on massively parallel
computing systems to attain faster processing [1, 2, 3, 4, 5] has been going on since

Yuji Sato
Faculty of Computer and Information Sciences, Hosei University, 3-7-2 Kajino-cho, Koganei-shi,
Tokyo 184-8584, Japan, e-mail: yuji@k.hosei.ac.jp

Naohiro Hasegawa
Graduate School of Computer and Information Sciences, Hosei University, 3-7-2 Kajino-cho,
Koganei-shi, Tokyo 184-8584, Japan, e-mail: naohiro.hasegawa.af@stu.hosei.ac.jp

Mikiko Sato
Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho
Koganei-shi, Tokyo 184-8588, Japan, e-mail: mikiko@namikilab.tuat.ac.jp

1

2 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

about 1990, but it has not come into widespread use. On the other hand, multi-core
processors, graphics processing units (GPU) and other such many-core processors
have been coming into wide use in ordinary personal computers in recent years. The
features of many-core processors include suitability for small and medium scale
parallelization of from several to several hundreds of nodes, and low-cost compared
to massively parallel computing systems. This environment has stimulated research
on parallelization of evolutionary computation on many-core processors [6, 7, 8,
9, 10]. These current report, however, focus on benchmark tests for evolutionary
computation using typical GPUs.

The objective of our research is to use an actual and practical problem to demon-
strate that practical processing time is possible through the use of a GPU for par-
allelization of evolutionary computation, even for problems for which the use of
evolutionary computation has not been investigated previously because of the pro-
cessing time problem.

As the first step towards that objective, we take the problem solving Sudoku
puzzles [11] and investigate acceleration of the processing with a GPU. The reasons
for this approach are listed below.

1. Sudoku puzzles are popular throughout the world.
2. Assuming a single core processor, the processing time for genetic algorithms is

much higher than for backtracking algorithms [12]. On the other hand, backtrack-
ing algorithms pose problems for parallelization, whereas evolutionary compu-
tation is suitable for parallelization. Therefore, increasing the number of GPU
cores may make the processing time for genetic algorithms equal to or less than
that for backtracking algorithms.

3. The use of multi-core processors has recently expanded to familiar environments
like desktop PCs and laptop computers, and it has become easy to experiment
with parallelization programs on multi-core processors through thread program-
ming. GPUs are designed for the processing of computer graphics in games.
But research on General-Purpose computation on Graphics Processing Units
(GPGPU) has begun, and GPUs can be used to support solving a logical game.

4. Although the processing time for the backtracking algorithm increases exponen-
tially as the puzzle size increases from 9×9 to 16×16, the fact that a genetic
algorithm (GA) is a stochastic search algorithm opens up the possibility of re-
versing the processing time ratio.

High-speed evolutionary computation by a GPU requires the design of a parallel
program that is dependent on the number of cores and memory capacity in the GPU.
This means adjusting the degree of parallelization and the amount of processing al-
located to each task according to GPU specifications. In the case of Core i7, how-
ever, we focus only on the degree of parallelization afforded by the number of cores
in a multi-core processor and propose a method for speeding up Sudoku problem
solving by general-purpose thread programming conforming to POSIX specifica-
tions [13].

In this paper, we show the possibility of a large reduction in processing time for
evolutionary computation by parallelization using a many-core processor. In the fol-

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 3

lowing section (Section 2), we explain the rule of Sudoku. In Section 3, we show an
improvement in the accuracy of Sudoku puzzle solution for by using a genetic oper-
ation that takes building-block linkage into account [14]. In Section 4, we propose
an implementation of a parallel genetic algorithm on a GPU. Section 5 describes a
comparative evaluation of the solution of a difficult Sudoku puzzle executed on a
CPU and on a many-core processor. Section 6 presents a discussion and Section 7
concludes this paper.

2 The Rules of Sudoku

The Sudoku rules are explained in Fig. 1. General Sudoku puzzles consist of a 9×9
matrix of square cells, some of which already contain a numeral from 1 to 9. The
arrangement of given numerals when the puzzle is presented is called the starting
point. In Fig. 1, it contains 24 non-symmetrical given numbers, and the correct num-
ber for the other 57 points should be solved. The degree of difficulty varies with the
number of given numerals and their placement. Basically, fewer given numerals
means a higher number of combinations among which the solution must be found,
and so raises the degree of difficulty. But, there are about 15 to 20 factors that have
an effect on difficulty rating [11]. A Sudoku puzzle is completed by filling in all of
the empty cells with numerals 1 to 9, but no row or column and no 3×3 sub-block
(the sub-blocks are bound by heavy lines in Fig. 1) may contain more than one of
any numeral. An example solution to the example Sudoku puzzle given in Fig. 1 is
shown in Fig. 2. In this figure, the given numbers marked in bold-face.

! " # $

$ % &

"

' % !

" (

) $ '

(

) ! $

$ # !)

!"#$%&'("#$()*+(,"

*%%"(&'-./,0122234"

!"/$5"#$()*+(,"*%%"

(&'-./,0122234"

!"/.6+$("#$()*+(,"

*%%"(&'-./,0122234"

Fig. 1 An example of Sudoku puzzles, each cell of 24 positions contains a given number, the other
position should be solved.

4 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

4 1 9 8 6 4 3 5 1 7 9 2 8
8 5 7 8 1 5 3 2 9 7 4 6

1 2 9 7 8 6 4 3 1 5

2 5 4 9 2 8 1 7 5 6 3 4
1 6 4 7 1 6 3 2 5 8 9

3 8 2 5 3 6 9 4 8 1 7 2
6 7 5 9 4 8 3 2 6 1

3 4 8 3 6 4 2 5 1 8 9 7

8 9 4 3 1 8 2 7 9 6 4 5 3

Fig. 2 A solution for the Sudoku puzzles given in fig 1. The given numbers marked in bold-face.

For these basic puzzles, methods such as back-tracking, which counts up all pos-
sible combinations in the solution, and meta-heuristics approach [15] are effective.
There also exist some effective algorithms to solve Sudoku puzzles [16, 17, 18] and
faster than GA.

On the other hand, there are also many variations of Sudoku. Some are puzzles of
larger size, such as 16×16 or 25×25. Others impose additional constraints, such as
not permitting the same numeral to appear more than once in diagonals or in special
sets of 9 cells that have the same color, etc. For larger puzzles such as 16×16 or
25×25, GA or other stochastic search method may be effective. Methods for speed-
ing up evolutionary computations through implementations on graphics processing
units (GPU) may be also effective.

3 Improved Accuracy in Sudoku Solution Using Genetic
Operation that Takes Linkage into Account

3.1 Genetic Operations That Takes Linkage into Account

A number of studies on application of GA to solving Sudoku have already been
made. On the other hand, there seems to be relatively few scientific papers. Refer-
ences [19, 20], for example, defines a one-dimensional chromosome that has a total
length of 81 integer numbers and consists of linked sub-chromosomes for each 3×3
sub-block of the puzzle, and applies uniform crossover in which the crossover po-
sitions are limited to the links between sub-blocks. References [21, 22] compares
the effectiveness for different crossover methods, including one-point crossover that
limit crossover points to links between sub-blocks, two-point crossover, crossover
in units of row or column, and permutation-oriented crossover operation. In these
examples, optimum solutions to simple puzzles are easily found, but the optimum

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 5

solutions for difficult puzzles in which the starting point has few givens are often not
obtainable in realistic time. We believe the reason for the failure of this design is that
the main GA operation, crossover, tends to destroy highly fits, schemata (BB) [23].
To avoid that problem, we defined 9×9 two-dimensional arrays as the GA chromo-
some and proposed a crossover operation [14] that takes building-block linkage into
account.

The fitness function, Eq. (1), is based on the rule that there can be no more than
one of any numeral in a row or column. The score of a row (column) is the number
of different elements in the row (column). The scoref of a given individualx is
defined as

f (x) =
9

∑
i=1

|gi |+
9

∑
j=1

|h j | (1)

where|gi | (|h j |) denotes the number of different numerals in theith row (jth col-
umn). Therefore, maximum score of the fitness functionf (x) becomes 162.

An example of this crossover is shown in Fig. 3. In this figure, we assumed that
the highest score of each row or column is 9. Therefore, the highest score of each
row or column in sub-blocks becomes 27. Child 1 inherits the row information from
parent 1, parent 2, and parent 1 in order from top to bottom. Child 2 inherits the
column information from parent 1, parent 2, and parent 2 in order from left to right.
Mutations are performed for each sub-block. Two numerals within a sub-block that
are not given in the starting point are selected randomly and their positions are
swapped. We added a simple local search function in which multiple child candi-
dates are generated when mutation occurs, and the candidate that has the highest
score is selected as the child. These experiments use tournament selection.

Fig. 3 An example of the crossover considering the rows or the columns that constitute the sub-
blocks.

6 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

3.2 Sudoku Solution Accuracy by GA

For the puzzles used to investigate the effectiveness of the genetic operations pro-
posed in [14], we selected two puzzles from each level of difficulty in the puzzle
set from a book [24]: puzzles 1 and 11 from the easy level, 29 and 27 from the in-
termediate level, and 77 and 106 from the difficult level, for a total of six puzzles.
We also used the particularly super difficult Sudoku puzzles introduced in reference
[25]. An example of the puzzles used in the experiment is shown in Fig. 4 and Fig. 5
respectively. The experimental parameters are population size: 150, number of child
candidates/parents: 2, crossover rate: 0.3, mutation rate: 0.3, and tournament size:
3.

The relation between the number of givens in the starting point and the number of
generations required to reach the optimum solution is shown in Table 1 and Fig. 6.
For the three cases in which only mutation is applied (a kind of random search),

when mutation and the proposed crossover method are applied (mut+cross), and
when the local search improvement measure is applied in addition to mutation and
crossover (mut+cross+LS), the tests were run 100 times and the averages of the re-
sults were compared. The termination point for the search was 100,000 generations.
If a solution was not obtained before 100,000 generations, the result was displayed

! "

$ % &

' &

" ' (# $)

)

$ " ! % (

%

" ! & '

(#

No. 27

! " # $

% #

& ! ' "

& ! '

(% $ "

%) #

% $ (!

& $

" # !)

No. 29

! "

" $ % & '

$

& (" %) '

$ %

") (# ' $!

) ' !

(') # ! %

& % # '

No. 1

! " # $

% & ' $

' & (

% " (

$ % (') "

$) &

! ' "

& ' (#

" () %

No. 11

! "

" # ! $

% " & !

"

" ' (

% # ")

) (

% ! " $

() ' %

No. 77

! "

"

! $

% $ & !

! # &

' (

) (

(! ') $

$ %

No. 106

(a) Easy level Sudoku (Givens: 38) (b) Easy level Sudoku (Givens: 34) (c) Medium level Sudoku (Givens: 30)

(d) Medium level Sudoku (Givens: 29) (e) Difficult level Sudoku (Givens: 28) (f) Difficult level Sudoku (Givens: 24)

Fig. 4 The puzzles used to investigate the effectiveness of the proposed genetic operations.

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 7

! " #

$

% & ' (

)

&

' $ ("

(# $

$) ' (&

SD1

! " #

$ % &

' (

($ #

! & %

')

$!

) "

" $

SD2

! " #

" $ % &

'

" #

% (

$)

(

$ ' !)

!) (

SD3

(a) GA generated Super difficult Sudoku

 (Givens: 24)

(b)AI Escarcot - Claim to be the most

difficult Sudoku (Givens: 23)

(c) Super difficult Sudoku from

www.sudoku.com (Givens: 22)

Fig. 5 The puzzles used for the particularly super difficult Sudoku puzzles.

Table 1 The comparison of how effectively GA finds solutions for the Sudoku puzzles with dif-
ferent difficulty ratings.

Difficulty
rating Givens

mut+cross+LS mut+cross Swap mutation

Count AverageCount AverageCount Average

Easy(#1) 38 100 62 100 105 100 105

Easy(#11) 34 100 137 100 247 100 247

Medium(#27) 30 100 910 100 2247 100 2247

Medium(#29) 29 100 3193 100 6609 100 6609

Difficult(#77) 28 100 9482 100 20658 100 20658

Difficult(#106) 24 96 26825 74 56428 74 56428

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!!"

38 34 30 29 28 24

()*+,-.//+01"

()*+,-.//"

()*23.4"

Generations

Givens

Fig. 6 Relationship between givens and the average number of GA generations needed to find the
solution.

8 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

as 100,000 generations. When the search is terminated at 100,000 generations, the
proportion of obtaining an optimum solution for a difficult puzzle was clearly im-
proved by adding the proposed crossover technique to the mutation, and improved
even further by adding the local search function. The mean number of generations
until a solution is obtained is also reduced.

In Table 2, the number of times the optimum solution was obtained in 100 test
runs using the super difficult Sudoku puzzles is shown [25]. Without any trial limi-
tation the method was solved every time. On the other hand, when using a limit of
100,000 trials, our method was solved 99 times, 83 times, and 74 times out of 100
test runs for three super difficult problems, respectively.

Table 2 The number of times the optimum solution was obtained in 100 test runs using super dif-
ficult problems.The numbers represents how many times out of 100 test runs each method reached
the optimum.

Sudoku puzzle SD1 SD2 SD3

Count 99 83 74

On the other hand, Fig. 7 shows the relation of the average number of generations
and dispersion. For puzzles that have the same number of initial givens, there is
a dependence on the locations of the givens, and a large variance is seen in the
mean number of generations needed to obtain the optimum solution. Furthermore,
for difficult puzzles that provide few initial givens, there were cases in which a
solution was not obtained even when the search termination point was set to 100,000
generations. The reason for that result is considered to be that the search scope for
the solution to a difficult puzzle is large and there exist many high-scored local
solutions that are far from the optimum solution. Another possibility is that there
are puzzles for which the search scope is too broad and there is a dependence on the
initial values. The processing time was still very poor compared to the backtracking
algorithm.

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 9

10

100

1000

10000

100000

1000000

50 500 5000 50000

G
en
er
a
ti
o
n
s!

Average!

Easy Medium Difficult1 Difficult2

Fig. 7 The difficulty order of tested Sudoku. The minimum and maximum generations needed to
solve each Sudoku from 100 test runs as a function of generations needed.

4 Accelerating Evolutionary Computation with Many-core
Architecture

4.1 System Architecture for Sudoku Solution

4.1.1 GTX 460 and CUDA Programming

Here we describe parallel processing of a program implemented on the GeForce
GTX 460, a commercial GPU from the NVIDIA Corporation that uses the CUDA
architecture. The GTX 460 comprises seven streaming multiprocessors (SMs). Each
SM has 48 CUDA Cores and comprises up to 48 KB of shared memory. Data read-
ing and writing between SM is accomplished via a large capacity global memory (1
GB). A part of the global memory is a constant read-only memory of 64 KB. The
processors within SM can read from and write to the shared memory at high-speed,
but the data reading and writing between SM and the global memory is slow. There-
fore, the parallelization of evolutionary computation must be implemented with full
consideration given to that feature. The basic CUDA operations are broadly grouped
into the four classes: (1) reserving GPU memory, (2) data transfer from CPU to
GPU, (3) parallel execution on the cores of the GPU, and (4) data transfer from the
GPU to the CPU.

CUDA has three units of processing: a thread corresponds to a single process, a
block is a number of threads, and a number of blocks of the same size constitute a
grid. In CUDA, a thread array of up to three dimensions can be made into a block

10 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

and a grid can include an array of blocks of up to two dimensions. The unit for
the execute instruction from the host is the grid. All of the threads in a grid are
executed by the same program, which is called the kernel. The CUDA programming
model is a kind of multi-thread model. Each thread is allocated an element in a data
array, and the data array serves in the management of the parallel execution of those
threads. Threads within the same block share the shared memory inside the SM, so
the number of threads within a block is limited to 1024.

4.1.2 System Architecture for Core i7

A conceptual diagram of the homogeneous multi-core processor architecture and
system software targeted by this research is shown in Fig. 8. Intel, AMD, and other
semiconductor companies have recently been marketing quad-core products for a
wide range of computers from PCs to servers. In this research, we target a homoge-
neous multi-core processor that has recently come to be used in PCs and attempt to
speed-up Sudoku puzzle solving on a commonly available system. The OS (Ubuntu
10.04) used in our research provides a POSIX thread interface as an application pro-
gramming interface (API) and can execute a multi-thread program on a multi-core
processor.

Core#0

Process

Th Th Th Th Th Th
・・・

Multi-thread Program

Operating System
(Thread management)

User
Level

Kernel
Level

Hardware
Level

Core#1 Core#2 Core#3

Multi-core processor

POSIX
Thread
Interface

Thread
Dispatch

Fig. 8 The system architecture for multi-core processors.

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 11

4.2 Parallel GA Model and Implementation for Many-core
Architecture

4.2.1 Parallel GA Model and Implementation for GPU Computation

Fig. 9 shows the parallel GA model for GPU computation. Because the grid is the
unit of execution for instructions from the host, we conducted experiments with
seven blocks in a grid to match the number of SM and with the number of threads in
a block equal to three times the number of individuals (3×N) for parallel processing
in units of rows or columns that consist of Sudoku region blocks. We allocate the
population pools PP and WP, and some working pools to the shared memory of each
SM. Here, PP is the population pool to keep individuals of the current population,
and WP is a working pool to keep newly generated offspring individuals until they
are selected to update PP for the next generation.

The procedure of the parallel GA model for GPU computation is as follows.

1. In the host machine, all individuals are randomly generated and then sent to the
global memory of the GPU.

2. Each SM copies the corresponding individuals from global memory to its shared
memory, and the generational process is repeated until the termination criteria
are satisfied.

Global Memory

CPU

. . .

Constant Memory

on GPU

P1 P2 P48

SM#1

. . .

. . .P1 P2 P48

SM#7

Thread 0

Thread 1
:

Thread 3N -1

Block 0

Thread 0

Thread 1
:

Thread 3N -1

Block 6

Grid

. . .

allocated allocated

generates and executes

PP#1 WP#1

Shared Memory Shared Memory

PP#7 WP#7

Initial

Individuals

evolved

individuals Initial

Individuals

evolved

individuals

Cache Cache

GPU

Fig. 9 Parallel GA model for GPU computation.

12 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

3. Finally, each SM copies the evolved individuals from its shared memory to global
memory.

When applying the GA to the solution of Sudoku, the general procedure is
to define an 81-bit one-dimensional chromosome that consists of the joined sub-
chromosomes of the various puzzle regions and then perform crossover with the
crossover points limited to only the joints between regions. Crossover of this type,
however, is believed to easily destroy building blocks. As a one way to solve that
problem, we define a two-dimensional chromosome, taking building-block linkage
into account. Crossover is then performed by assigning a score to each row or col-
umn, each of which consists of region blocks, comparing the scores for the two
parent individuals, and then passing the row or columns that have the highest scores
on to the child.

Generally, local search functions are effective for constraint satisfaction prob-
lems such as Sudoku. Our objective, on the other hand, remains as the solution of
Sudoku puzzles in a practical time within the framework of evolutionary computa-
tion. Accordingly, we added only a simple local search function in which multiple
child candidates are generated when mutation occurs, and the candidate that has the
highest score is selected as the child. This is equivalent to the selection function in
(µ,λ)-ES and is an operation in the evolutionary computation framework.

Implementation That Takes Measures Against the Initial Value Dependency
Problem into Account

From Fig. 7, we can see that when the number of individuals is 150, the number
of generations until the optimum solution is found depends on the initial values. If
we do not consider parallelization, the processing time is considered to be deter-
mined by the product of the number of individuals and the number of generations.
Accordingly, from the relation of the proportion of correct solutions obtained to the
processing time, we set the number of individuals to 150 on the basis of prelimi-
nary experiments. We could conjecture that the effect of parallelization using the
GPU would be that increasing the number of individuals would not greatly affect
the processing time.

On the other hand, increasing the parallelism requires that the data on individuals
and other data required for evolutionary computation be stored in the shared mem-
ory of the SM rather than in the global memory, but the shared memory capacity is
low and may not hold the data for a sufficient number of individuals. Furthermore,
the data transfer speed between SM in the GPU is more than 100 times slower
than the communication within SM, so an implementation that requires frequent
communication between SM is not suitable. Accordingly, we adopt an implemen-
tation method in which each SM runs the same evolutionary computation program,
changing only the initial values of the individual data, etc., and whichever SM finds
a solution terminates. In other words, the evolutionary computation programs run-
ning in the SMs using threads are executed in parallel, and the execution of the same
program in each SM with different initial values is considered to serve as a measure

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 13

against initial value dependency. This can be considered to be SIMD-type parallel
processing.

Sparing Use of High-speed Shared Memory

In previous experiments that involved the evaluation of benchmark tests imple-
mented on multi-core processors [10], tables for random number generation were
placed on each core to reduce the time required for random number generation.
On the other hand, the shared memory of the GTX 460 is small, with a maximum
of 48KB, so if random number tables are placed in each block, the required num-
ber of individuals cannot be defined. Therefore, the CURAND library function is
used instead of the random number tables. Random number generation with CU-
RAND is slower than using random number tables on each core, but it is much faster
than generating the random numbers on the host and transferring the values to each
SM. Furthermore, because the 64KB read-only constant memory can be accessed at
high-speed, the initial arrangement of the Sudoku puzzle (four bytes (int)×81 = 324
bytes) is stored in that cache memory. The data allocated to the shared memory is
as follows.

• Area for storing individual data: 1 byte (char)× 81× N × 2
• Work area for tournament selection: 4 bytes (int)× N
• Work area for crossover: 4 bytes (float)× N/2
• Work area for mutation: 1 byte (char)× 81× N

Parallel Processing in Units of Sub-chromosome

Fig. 10 shows an example of the swap mutation within a sub-block and the thread
assignment. For a Sudoku puzzle that comprises 3×3 region blocks, the genetic
manipulation for each region block is performed in parallel, so nine threads are
allocated to the processing for one individual. Because of the limited shared memory
capacity, however, we assign here three threads to the processing for one individual.
The processing for crossover, mutation or other such purpose for each line or column
that consists of three region blocks is accelerated by the parallel processing of three
threads.

4.2.2 Parallel GA Model and Implementation for Multi-core Processors

It can be seen from Fig. 7 that the number of generations needed to find an optimal
solution for the same Sudoku problem is highly dispersed. This indicates that a
Sudoku solution using evolutionary computations is dependent on the initial value
when a sufficient number of individuals cannot be set due to insufficient memory
capacity or other constraints. With this in mind, we generate the same number of

14 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

! " # $ % & ' ()

) % $ # (' & " !

(' &) ! " # % $

' () % & $! # "

" & % ! # ($) '

$ # ! ' ") % & (

& $ ' !) # % ! (

! " % " () $ &

%) (' ! $ " ' #

Thread 1

Thread 2

Thread 3

assign

swap mutation

Fig. 10 An example of the swap mutation within a sub-block and the thread assignment.

threads as cores in the target processor and propose a method that executes genetic
operations with each core having a different initial value. We also adopt the value of
the core that finds a Sudoku solution first.

The procedure of the parallel GA model at each core processor is as follows.

1. All individuals are randomly generated.
2. The generational process is repeated until the termination criteria are satisfied.
3. The core that finds a Sudoku solution first cancels the operations in the other

cores.

5 Evaluation experiments

5.1 Execution platform

The specifications of the execution platform used in experiments for Intel Core i7
and GTX 460 are listed in Table 3 and Table 4 respectively. The specifications of
the GTX 460 GPU used in these experiments are listed in Table 5.

Table 3 Multi-core processor execution environment.

CPU Intel Core i7 920 (2.67GHz, 4cores)

OS Ubuntu 10.04

C compiler gcc 4.4.3 (optimization “O3”)

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 15

Table 4 GPU execution environment.

CPU Phenom II X4 945 (3GHz, 4 cores)

OS Ubuntu 10.04

C compiler gcc 4.4.3 (optimization “O3”)

CUDA Toolkit 3.2 RC

Table 5 GTX 460 specifications.

Board ELSA GLADIAC GTX 460

#Core 336 (7 SM×48 Core/SM)

Clock 675MHz

Memory 1GB (GDDR5 256 bits)

Shared memory/SM 48KB

#Register/SM 32768

#Thread/SM 1536

5.2 Scalability

The system described here has scalability with respect to the number of cores. In-
creasing the number of cores in an SM is also considered to improve robustness
against the dependence on initial values. For this reason, in the case of Core i7, we
varied the number of threads to be executed in parallel from 1 to 8 and surveyed
(1) solution rate, (2) average number of generations until the correct solution was
obtained, and (3) average execution time. The number of cores in the multi-core
processor is 4, but since 2 threads can be executed in parallel in one core by hyper-
threading technology, we performed the experiment by executing a maximum of 8
threads in parallel. On the other hand, in the case of GPU, we varied the number of
SM ranging from one to seven.

The results are presented in Tables 6, 7, and 8 for Core i7, and in Tables 9,
10, and 11 for GTX 460. The values shown in the results are the averages for 100
experiments that were conducted with 150 individuals and a cut-off of 100,000 gen-
erations.

16 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

Table 6 The rate of correct answers, the number of average generations, and the average execution
time (Intel Core i7: SD1).

#Threads Count [%] Average Gen. Exec. time

1 94 32,858 22s 19

2 100 15,268 13s 87

4 100 7,694 13s 11

8 100 3,527 7s 39

Table 7 The rate of correct answers, the number of average generations, and the average execution
time (Intel Core i7: SD2).

#Threads Count [%] Average Gen. Exec. time

1 82 42,276 28s 41

2 98 25,580 22s 48

4 100 13,261 21s 47

8 100 5,992 12s 12

Table 8 The rate of correct answers, the number of average generations, and the average execution
time (Intel Core i7: SD3).

#Threads Count [%] Average Gen. Exec. time

1 69 60,157 39s 88

2 93 46,999 40s 43

4 100 19,982 30s 79

8 100 8,795 17s 13

Table 9 The rate of correct answers, the number of average generations, and the average execution
time (GTX 460: SD1).

#SM Count [%] Average Gen. CPU time

1 62 57,687 16s 728

2 80 40,820 11s 845

4 98 19,020 5s 527

8 100 10,014 2s 906

Table 10 The rate of correct answers, the number of average generations, and the average execu-
tion time (GTX 460: SD2).

#SM Count [%] Average Gen. CPU time

1 50 70,067 20s 199

2 69 58,786 16s 958

4 93 31,254 9s 260

8 97 22,142 6s 391

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 17

Table 11 The rate of correct answers, the number of average generations, and the average execu-
tion time (GTX 460: SD3).

#SM Count [%] Average Gen. CPU time

1 32 82,742 23s 958

2 59 68,050 19s 722

4 77 47,811 13s 879

8 95 30,107 8s 727

5.3 Experiments on Increasing the Number of Individuals

For a large number of individuals, initial values in a Sudoku solution are highly
diverse. To investigate the relationship between diversity in initial values and the
results of a Sudoku solution, we varied the number of individuals on Intel Core i7
from 150 to 400 and surveyed (1) solution rate, (2) average number of generations
until the correct solution was obtained, (3) average execution time, and (4) minimum
number of generations.

The result for SD2 is presented in Table 12. The values shown in the results are
the averages for 100 experiments. In these experiments, we limited the number of
threads to 4 and 8 and set the search termination point to 100,000 generations.

Table 12 The result on increasing the number of individuals (SD2).

#Individuals Count [%] Average Gen. Exec. time Best Gen.

100 100 8,641 11s 63 644

150 100 5,992 12s 12 243

200 100 7,115 19s 20 229

300 100 9,441 38s 29 123

400 98 15,441 84s 76 86

5.4 Minimum Number of Generations

To estimate the performance in the case that the initial value dependence problem
has been solved, we determined the minimum numbers of generations and the exe-
cution times required to solve SD1 through SD3 (Table 13).

18 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

Table 13 The minimum numbers of generations and the execution times required to solving SD1
through SD3.

Sudoku Minimum Gen. Exec. time

SD1 83 25 ms

SD2 158 47 ms

SD3 198 76 ms

6 Discussion

6.1 Scalability and the Dependence on Initial Values

From Table 6 through Table 8, we can see that increasing the number of threads
reduces the execution time and increases the correct solution rate. Furthermore, we
can see that the reduction rate of the average number of generations and average
execution time with respect to execution by one thread decreases as the number of
threads increases. In other words, the problem of initial value dependence tends to
be eliminated as the number of threads is increased for both the processing time and
the correct solution rate.

On the other hand, in the case of GPU, from Table 9 through Table 11, we can
see that increasing the number of SM reduces the execution time and increases the
correct solution rate. In other words, the problem of initial value dependence tends
to be eliminated as the number of SM is increased for both the processing time
and the correct solution rate. From Table 13, increasing the number of SM or any
other means of solving the initial value dependence problem makes it fully possible
to solve super-difficult Sudoku puzzles within one second in a stable manner by
parallelization of evolutionary computation using a GPU.

In other words, we consider that the performance of a multi-core processor is
scalable in relation to number of threads and that the performance of a GPU is
scalable in relation to the number of SMs. Parallelization using the GTX 460 GPU
finds solutions faster than that using Core i7 multi-core processor, but we consider
this to be due simply to a difference in number of cores. On the other hand, Core
i7 exhibits higher solution rates, which we think are due to the fact that random
numbers in GTX 460 are generated using the CURAND library function.

6.2 Setting the Number of Individuals

Generally, we can consider that the effect of parallelization will become large as the
number of individuals increases. From Table 12, in case of the Core i7, increasing
the total number of individuals increased the number of individuals that came closer
to the correct Sudoku solution but also increased the number that deviated from
the correct solution. This is considered to be the reason why the average number

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 19

of generations until the correct solution was obtained also increased. Increasing the
number of individuals also increased the processing time for one generation thereby
increasing the average execution time until the correct solution was obtained. The
value of best generations also decreased. Accordingly, if the number of cores in the
processor can be increased and processing performance by parallelization increased
in future multi-core processors, we can expect processing to accelerate to the point
where it will be possible to derive correct solutions for even super-difficult Sudoku
problems in less than a few seconds.

In the processing-acceleration technique by GPU that we have been developing in
parallel with the above technique, programming must take into account upper limits
such as task parallelization and memory capacity based on the hardware specifica-
tions of the GPU to be used. There is therefore a limit as to how far the number of
individuals can be increased to solve the problem of initial value dependence. On
the other hand, the technique introduced in this paper, while inferior to the GPU
technique in terms of parallelization, enables a parallel program to be executed
without limitations in number of threads or memory capacity by virtue of using
general-purpose multi-core processors. Looking forward, we believe that acceler-
ating evolutionary computations for solving Sudoku puzzles by a highly-parallel
system should be effective for either GPUs or multi-core processors while solving
the problem of initial value dependence by increasing the number of individuals.

On the other hand, in the case of GTX 460, the amount of data allocated to the
shared memory as described in Section 4.2.1 is equal to 249N, so the maximum
number of individuals for which data can be stored in the 48 KB shared memory is
192. Furthermore, considering that 192 is a multiple of the number processors within
the SM and also a multiple of the CUDA thread processing unit, the execution time
and the correct solution rates for when the number of individuals is set to 192 are
presented in Table 14.

Table 14 The execution time and the correct solution rates for when the number of individuals is
set to 192.

Sudoku Count [%] Average Gen. CPU time

SD1 100 9,072 2s 751

SD2 100 13,481 4s 530

SD3 100 22,799 6s 862

Compared with the case in which the number of individuals is set to 150, the
processing time was reduced by approximately 5% while the correct solution rate
remained at 100%. For SD2, the correct solution rate increased from 97% to 100%
and the processing time decreased by approximately 29%. For SD3, the correct
solution rate increased from 90% to 100% and the processing time decreased by
approximately 21%. From this data, we can see that setting the number of individ-
uals to an appropriate value for parallel execution of a evolutionary computation
program written in C on a GPU accelerates the processing relative to processing on

20 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

a CPU by a factor of 25.5 for the SD1 problem, by a factor of 19.1 for SD2, and by
a factor of 16.2 for SD3. We can also see that a correct solution rate of 100% can be
attained, even for problems in all three of the super-hard categories.

It can therefore be seen that super-difficult Sudoku problems can be solved in
realistic times by the parallelization of evolutionary computation using the Core i7
multi-core processor commonly used in desktop PCs or the inexpensive, commer-
cially available GTX 460 GPU.

These experiments also show that the GPU can find solutions faster than the
multi-core processor by making use of a higher degree of parallelization. As new
GPUs with a higher number of SMs and a higher degree of integration come to be
developed, we can expect even faster execution times. At the same time, the GPU
suffers from limitations such as the need for programming that must consider upper
limits in task parallelization and in the memory allocated to each task due to hard-
ware constraints. In other words, it is more difficult to use a GPU than a multi-core
processor which can execute programs in parallel without having to worry about
limitations in number of threads or memory capacity. Furthermore, when using a li-
brary function such as CURAND for random-number generation due to limitations
in shared-memory capacity within a SM, problems with the cycle length of random
numbers generated in this way must be taken into account.

Thus, when trying to decide whether to use a GPU or multi-core processor when
attempting to accelerate evolutionary computations by parallelization, due consid-
eration must be given to the target application problem.

6.3 Assessment of Fine-grained Parallelization on a
Sub-chromosome Unit

The effect of acceleration on the proposed crossover and mutation methods using
fine-grained parallelization of a sub-chromosome unit was assessed. Since assess-
ment is made on an individual without parallel processing, there is allowance in the
number of utilizable threads. Fig. 11 shows the relationship between mutation and
thread allocation.

As shown in Fig. 11, in order to increase parallel processing speed, 9 threads were
allocated to the processing of 1 individual. Two numbers were randomly chosen
within a region, and swapping of the two within the 9 region blocks was processed
in parallel.

Fig. 12 shows the relationship between crossovers and thread allocation. Regard-
ing crossovers, to prevent the destruction of the valid part of the solution (building
blocks), 3 rows or 3 columns consisting of region blocks were compared and the
higher scores were passed onto the offspring. Since each row and column indepen-
dently undergoes this process three times in parallel, 3 threads can be allocated to
each individual and thus, parallel processing is achieved.

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 21

! " # $ % & ' ()

) % $ # (' & " !

(' &) ! " # % $

' () % & $! # "

" & % ! # ($) '

$ # ! ' ") % & (

& $ ' ") # (! %

! " ($ %) ' &

%) (& ' ! " $ #

9-Threads

Fig. 11 Relationship between mutation and thread allocation.

Parent1 Parent2

! " # $ % & ' () ! " # $ % & ' ()

) % $ # (' & " !) % $ # (' & " !

(' &) ! " # % $ (' &) ! " # % $

' () % & $! # " ' () % & $! # "

" & % ! # ($) ' " & % ! # ($) '

$ # ! ' ") % & ($ # ! ' ") % & (

& $ ' ") # (! % & $ ' ") # (! %

! " ($ %) ' & # ! " ($ %) ' &

%) (& ' ! " $ # %) (& ' ! " $ #

!"#$%&'(

!"#$%&)(

!"#$%&*(

!"#$%&'(

!"#$%&*(

!"#$%&)(

Fig. 12 Relationship between crossovers and thread allocation.

22 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

The parameters for the genetic algorithm were the same as those of the previ-
ous experiment, with the level of difficulty set at Super Difficult 3. The machine
specifications used for the experiment were shown in Table 15.

Table 15 GTX 580 GPU execution environment (2).

OS Ubuntu 10.04

CUDA Toolkit 4.0

GPU GeForce GTX 580

CPU Phenom II X4 945 (3GHz, 4 cores)

Main Memory DDR2-800 4GB

Table 16 shows the fine-grained parallel processing results. Processing time
equals the average generation number required to obtain the answer divided by exe-
cution time (sec). In addition, the degree of the increase in processing performance
is a value relative to execution without parallel processing of individuals on a CPU.

Table 16 shows that fine-grained parallel processing of the proposed crossover
method increased performance by 23%, while fine-grained parallelization of muta-
tions without parallel processing of individuals on a GPU increased process perfor-
mance by 75% when compared to execution without parallel processing of individu-
als on a GPU. In addition, process performance increased by approximately 4 times
with parallel processing of proposed mutation and crossover methods on a GPU
compared to execution without parallel processing on a CPU. The performance in-
crease is lower compared to parallel processing on an individual level because the
overhead required for thread generation is large. Further, the increase in process
performance is larger with the mutation method compared to the crossover method
because the number of threads, that is, the degree of parallel processing, is set to
9 and the number of processes for mutations is large. Performance increased by
approximately 3 times for processing on a GPU compared to processing on CPU
because a number of the same processes with different initial values are executed by
16 Streaming Multi-processors simultaneously, hence, there is less of a problem of
dependence on initial values.

Our results show a modest increase in performance with fine-grained paral-
lel processing of genetic operations such as crossovers and mutations on a sub-
chromosome unit compared to parallel processing on an individual level. On the
other hand, in an ideal environment, two parallel processes that are run simultane-
ously may be compounded to produce even faster processing. In our experiment
using GTX 460, each performance increase was not compounded. The reason is the
problem of computing system resources which are limited by the executable number
of threads in each block. Improvement of the GPU endeavors to eliminate the lack
of system resources, which will allow the execution of the two parallel processors
to be multiplied, resulting in much faster processing.

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 23

Table 16 Comparison of processing time with fine-grained parallel processing.

Processing Processing Increase
time performance in processing
[sec] (Generation/sec) performance

No parallel
processing 42.600 1282 1
of individuals (CPU)

No parallel
processing 17.110 3766 2.93
of individuals (GPU)

Parallel processing
of crossovers 14.313 4054 3.16
(GPU)

Parallel processing
of mutations and 10.730 5018 3.91
crossovers (GPU)

7 Conclusion

We have used the problem of solving Sudoku puzzles as an actual and practical
problem to demonstrate that practical processing time is possible through the use of
many-core processors for parallel processing of evolutionary computation. Specifi-
cally, we implemented parallel evolutionary computation on the NVIDIA GTX 460,
a commercially-available GPU, or the commercially available Core i7 multi-core
processor from Intel. Evaluation results showed that execution acceleration factors
of from 10 to 25 relative to execution of a C program on a CPU are attained and a
correct solution rate of 100% can be achieved, even for super-difficult problems. In
short, we showed that the parallelization of evolutionary computation using a multi-
core processor commonly used in desktop PCs or a GPU that can be purchased at
low cost can be used to solve problems in realistic times, even in the case of prob-
lems for which the application of genetic algorithms has not been studied in the past
because of excessive processing times.

Furthermore, fine-grained parallelization of genetic operations that take linkage
into account accelerated processing by a factor of 4 relative to processing on a CPU.
An increase in GPU resources will diminish the conflict of thread usage between
coarse-grained parallelization on an individual level and will enable a faster pro-
cessing speed.

References

1. Gordon, V.S., Whitley, D.: Serial and parallel genetic algorithms as function optimizers. In:
Proceedings of the 5th International Conference on Genetic Algorithms, Morgan Kaufmann
(1993) 177–183

24 Yuji Sato, Naohiro Hasegawa and Mikiko Sato

2. Mühlenbein, H.: Parallel genetic algorithms, population genetics and combinatorial optimiza-
tion. In: Proceedings of the 3rd International Conference on Genetic Algorithms. (1989)
416–421

3. Mühlenbein, H.: Evolution in time and space - the parallel genetic algorithm. In: Foundations
of Genetic Algorithms, Morgan Kaufmann (1991) 316–337

4. Shonkwiler, R.: Parallel genetic algorithm. In: Proceedings of the 5th International Conference
on Genetic Algorithms. (1993) 199–205

5. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Pub-
lishers (2000)

6. Byun, J.H., Datta, K., Ravindran, A., Mukherjee, A., Joshi, B.: Performance analysis of
coarse-grained parallel genetic algorithms on the multi-core sun UltraSPARC T1. In: South-
eastcon, 2009. SOUTHEASTCON ’09. IEEE. (2009) 301–306

7. Serrano, R., Tapia, J., Montiel, O., Sepúlveda, R., Melin, P.: High performance parallel
programming of a ga using multi-core technology. In Castillo, O., Melin, P., Kacprzyk, J.,
Pedrycz, W., eds.: Soft Computing for Hybrid Intelligent Systems. Volume 154 of Studies in
Computational Intelligence. Springer Berlin / Heidelberg (2008) 307–314

8. Tsutsui, S., Fujimoto, N.: Solving quadratic assignment problems by genetic algorithms with
GPU computation: a case study. In: GECCO ’09: Proc. 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference. (2009) 2523–2530

9. Munawar, A., Wahib, M., Munetomo, M., Akama, K.: Theoretical and empirical analysis of a
gpu based parallel bayesian optimization algorithm. In: Proceedings of the 2009 International
Conference on Parallel and Distributed Computing, Applications and Technologies. PDCAT
’09 (2009) 457–462

10. Sato, M., Sato, Y., Namiki, M.: Proposal of a multi-core processor from the viewpoint of evo-
lutionary computation. In: Proceedings of the IEEE Congress on Evolutionary Computation
2010. (July 2010) 3868–3875

11. Wikipedia: Sudoku. Available via WWW: http://en.wikipedia.org/wiki/Sudoku (cited
8.3.2010)

12. Wikipedia: Backtracking. Available via WWW: http://en.wikipedia.org/wiki/Backtracking
(cited 1.11.2011)

13. IEEE: ISO/IEC 9945-1 ANSI/IEEE Std 1003.1. (1996)
14. Sato, Y., Inoue, H.: Solving sudoku with genetic operations that preserve building blocks. In:

Proceedings of the IEEE COnference on Computational Intelligence in Game. (2010) 23–29
15. Lewis, R.: Metaheuristics can solve sudoku puzzles. Journal of Heuristics13 (August 2007)

387–401
16. Simonis, H.: Sudoku as a constraint problem. In: Proc. of the 4th Int. Workshop Modelling

and Reformulating Constraint Satisfaction Problems International Conference on Genetic Al-
gorithms. (2005) 13–27

17. Lynce, I., Ouaknine, J.: Sudoku as a sat problem. In: Proceedings of the 9 th International
Symposium on Artificial Intelligence and Mathematics, AIMATH 2006, Fort Lauderdale,
Springer (2006)

18. Moon, T., Gunther, J.: Multiple constraint satisfaction by belief propagation: An example
using sudoku. In: In 2006 IEEE Mountain Workshop on Adaptive and Learning Systems,
Springer (2006)

19. Mantere, T., Koljonen, J.: Solving and ranking sudoku puzzles with genetic algorithms. In:
Proceedings of the 12th Finnish Artificial Conference STeP 2006. (October 2006) 86–92

20. Mantere, T., Koljnen, J.: Solving, rating and generating sudoku puzzles with ga. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation 2007. (July 2007) 1382–1389

21. Moraglio, A., Togelius, J., Lucas, S.: Product geometric crossover for the sudoku puzzle. In:
Proceedings of IEEE Congress on Evolutionary Computation 2006. (July 2006) 470–476

22. Galvan-Lopez, E., O’Neill, M.: On the effects of locality in a permutation problem: The su-
doku puzzle. In: Proceedings of IEEE Symposium on Computational Intelligence and Games
(CIG 2009). (September 2009) 80–87

Acceleration of Genetic Algorithms for Sudoku Solution on Many-core Processors 25

23. Goldberg, D.E., Sastry, K.: A practical schema theorem for genetic algorithm design and tun-
ing. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference. (2001)
328–335

24. Number Place Plaza (eds.): Number place best selection 110. Cosmic mook (December 2008)
25. Super difficult Sudoku’s. Available via WWW: http://lipas.uwasa.fi/ timan/sudoku/EAht 2008.

pdf#search=’CT20A6300%20Alternative%20Project%20work%202008’
(cited 8.3.2010)

