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ABSTRACT 
An iterated function f(x) is a function that when composed with 
itself, produces a given expression f(f(x))=g(x). Iterated functions 
are essential constructs in fractal theory and dynamical systems, 
but few analysis techniques exist for solving them analytically. 
Here we propose using genetic programming to find analytical 
solutions to iterated functions of arbitrary form. We demonstrate 
this technique on the notoriously hard iterated function problem of 
finding f(x) such that f(f(x))=x2–2. While some analytical 
techniques have been developed to find a specific solution to 
problems of this form, we show that it can be readily solved using 
genetic programming without recourse to deep mathematical 
insight. We find a previously unknown solution to this problem, 
suggesting that genetic programming may be an essential tool for 
finding solutions to arbitrary iterated functions. 

Categories and Subject Descriptors 
J.2 [Physical Sciences and Engineering]: Mathematics and 
statistics.  

General Terms 
Algorithms 

Keywords 
Iterated Functions, Symbolic Regression 

1. INTRODUCTION 
Solving an iterated function is a type of mathematical problem 
where the analytical form of a function f(x) is not known, but its 
composition with itself is known. For example, what is f(x) such 
that f(f(x)) = g(x), where g(x) is a given function. 

Iterated functions appear in various fields such as fractal theory, 
computer science, dynamical systems, and maps. Despite their 
prevalence, they are notoriously difficult to solve, and few 
mathematical tools exist to analyze them. A few methods have 
been developed to analyze special cases. In the general case, 
solving these problems has involved deep mathematical insight 
and experimentation with different substitutions and 
reformulations [1] for each class of iterated function problem.  

In particular, a challenging iterated function problem has 
circulated as a test of one’s intelligence particularly among 
physicists [2] and in math competitions [3]. This problem asks to 
find an analytical function f(x) such that f(f(x)) = x2 – 2. In fact, 
those who first solved this problem are still celebrated within 

various communities. Renowned physicist Michael Fisher is 
rumored to have solved the puzzle within five minutes [2]; 
however, few have matched this feat. 

The problem is enticing because of its apparent simplicity. Similar 
problems such as f(f(x)) = x2, or f(f(x)) = x4 + b are straightforward 
(see Table 1). The fact that the slight modification from these 
easier functions makes the problem much more challenging 
highlights the difficulty in solving iterated function problems. 

Table 1. A few example iterated functions problems. 

Iterated Function Solution 

 f(f(x)) = x  f(x) = x 

 f(f(x)) = x – 2  f(x) = x – 1 

 f(f(x)) = x4   f(x) = x2  

 f(f(x)) = x2 – 2   f(x) = ? 

In this paper, we propose using genetic programming to identify 
and solve such iterated functions. We adapt the symbolic 
regression algorithm to search for equations that iterate to the 
correct map and solve the f(f(x)) = x2 – 2 problem.  

The key benefit of using symbolic regression to solve this type of 
problem is that it does not require deep mathematical insight into 
the problem and it is free to find all solution forms to the iterated 
function. Current solutions to this problem require recognizing 
relations of Chebyshev polynomials or substituting special 
functional forms. These methods also make assumptions which 
lead to specific solutions, but there may and often do exist other 
valid or more general solutions. We show genetic programming 
can search for all solution types without assuming certain forms 
and find new solutions faster than even the best human problem 
solvers. 

In the remaining sections, we provide a background on iterated 
functions and their known solution methods. We then detail our 
genetic programming approach and results, including a new 
solution to the notorious iterated function problem, before 
concluding with final remarks. 

2. BACKGROUND 
Iterated functions are known to present difficult mathematical 
challenges. Here, we overview various applications of iterated 
functions and known techniques for handling them. 
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2.1 Iterated Functions 
An iterated function is a mathematical function that is composed 
with itself one or more times (the output of a function is fed back 
into the same function one or more times). For iterated function 
problems, we are given the output of the function after iteration, 
and we are attempting to find the function that produces this 
output. For example: 

fn(x) = g(x) 

where g(x) is given and the notation fn(x) denotes that the function 
f(x) is iterated n times, what is the function f(x)? Problems such as 
this arise in several fields from fractals, to computer science, and 
dynamical systems. 

A fractal is produced by a system of one or more iterated 
functions – which may be graphical or algebraic functions. The 
inverse problem in iterated function systems is the problem of 
identifying the procedure that produces a fractal. For example, 
given the result of a simple fractal, what is the iterated function 
that produces that fractal? Evolutionary algorithms have been 
applied to the graphical version of problem [4]. In our case, we 
are looking at a solving a particularly challenging algebraic 
iterated function problem. 

Iterated functions also arise in computer science. Approximating 
the iterated function has been applied to image compression [5], 
where a given image is approximated by finding a simple function 
that can reproduce it when iterated. Iterated functions also arise in 
lambda calculus and functional programming, where one is 
attempting to find a recursive function to compute a desired result. 

In dynamical systems, iterated functions arise in finite difference 
equations and 1D maps [1]. A dynamical system can be modeled 
by an iterated equation. The iterated function problem arises here 
when the behavior of the dynamical system is known, but the 
difference or map function is unknown. 

2.2 Analytical Solution Methods 
In this section we overview a few of the basic mathematical 
techniques that have been deduced to solve certain families of 
iterated functions. 

The most basic approach to solving an iterated function is to 
assume the function has some given structure, such as a 
polynomial structure. For example, given: 

f(f(x)) = x4 – 2 

one might suspect that the function f(x) is also a polynomial of 
lesser degree. For example, assume f(x) takes the following form: 

f(x) = a x2 + b x + c 

Iterating this form yields: 

f(f(x)) = a (a x2 + b x + c)2 + b (a x2 + b x + c) + c 

= a3x4+2a2bx3+(2a2c+ab2+ab)x2+(2abc+b2)x+ac2+bc+c 

Next, we solve for a, b, and c, by equating the coefficients to the 
known iterated function coefficients. We solve the set of 
equations a3 = 1, 2a2b = 0, 2a2c+ab2+ab = 0, 2abc+b2 = 0, and 
ac2+bc+c = -2 for a, b and c of our assumed f(x) polynomial. 

This approach breaks down however whenever the function is not 
polynomial. In fact, some iterated functions produce polynomials, 
but cannot be solved as polynomials. For example, given: 

f(f(x)) = x2 – 2 

solving f(x) for polynomial coefficients fails. Yet, this problem 
does have a solution. 

This specific example is a long standing problem in mathematics. 
Recently, different methods have been developed to handle this 
particular case [1, 2]. One clever approach is to substitute in the 
following functional form to rewrite f(f(x)): 

f(x) = g(a g-1(x)), 

f(f(x)) = g(a2 g-1(x)), 

g(a2 g-1(x)) = x2 – 2, 

where a is a parameter constant, and g(x) is some other function 
that we may infer by inspection. For example, one may think to 
set a2 = 2 and substitute t = g-1(x) to write: 

g(2t) = x2 – 2 = g(t)2 – 2 

which looks remarkably as a double angle formula, solved as: 

x = g(t) = 2 cos(t), 

x = g(g-1(x)) = 2 cos(g-1(x)) 

Next, we can solve for f(x): 

f(x) = 2 cos(√2 cos-1(x/2)) 

A second method involves the application of Chebyshev 
polynomials. One may recognize the following identities of 
Chebyshev polynomials: 

Tn(cos(t)) = cos(n t), and 

Tm(Tn(x)) = Tm·n(x) 

By inspection one could then rewrite: 

f(f(2 cos(t/2))) =  2*cos(n t/2), 

f(f(2 cos(t/2)) = 2 cos(√2  t/2), 

f(x) = 2 cos(√2 cos-1(x/2)) 

While these solutions are remarkable deductions, they also make 
assumptions on the form of f(x) and cannot be applied to all 
iterated function problems. Below, we show that the problem can 
be solved without deep mathematical insight or assuming a 
particular form of the f(x) solution. 

3. OUR METHOD 
We adapted the symbolic regression algorithm to search for 
solutions to the iterated function problem. Here we overview the 
symbolic regression algorithm, the fitness function for iterated 
functions, and how we verify the solutions found. 

3.1 Symbolic Regression 
Symbolic regression [6] is a type of genetic program for searching 
the space of expressions computationally by minimizing various 
error metrics. Both the parameters and the form of the equation 
are subject to search. In symbolic regression, many initially 
random symbolic equations compete to model experimental data 
in the most parsimonious way. It forms new equations by 
recombining previous equations and probabilistically varying their 
sub-expressions. The algorithm retains equations that model the 
experimental data better than others while abandoning 
unpromising solutions. After an equation reaches a desired level 
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of accuracy, the algorithm terminates, returning its most 
parsimonious equation that is most likely to correspond to the 
intrinsic mechanisms of the observed system. 
In symbolic regression, the genotype or encoding represents 
symbolic expressions in computer memory. Often, the genotype is 
a binary tree of algebraic operations with numerical constants and 
symbolic variables at its leaves [7, 8], for example, a binary parse 
tree. Other encodings include acyclic graphs [9] and tree-adjunct 
grammars [10].  
A point mutation can randomly change the type of the floating-
point operation (for example, flipping an add operation to a 
multiply or an add to a system variable), or randomly change the 
parameter constant associated with that operation (if it is used). 
The crossover operation recombines two existing equations to 
form a new equation. To perform crossover, we select a random 
location in the genome, and copy all operation and parameter 
values to the left of this point from the first parent and remaining 
operations and parameters to the right from the second parent. 

Symbolic regression has been applied to explicit equations, 
dynamical systems [11], and invariant equations [12]. Here, we 
are applying it to a new type of problem: iterated functions. 

3.2 Fitness Function 
In order to search for solutions to iterated functions using 
symbolic regression, we need only to modify the fitness function 
of the algorithm – the metric for how well an equation explains 
the iterated function.  

For the problem f(f(x)) = x2 – 2, we generated data on the parabola 
x2 – 2. We sampled 200 points uniformly between x = -5 and x = 
5. Additionally, generate a validation set on a wider range 
between x = -10 and x = 10. The fitness during evolution is 
measured on the smaller range while the fitness on the validation 
set is used for selecting the best solution and testing for 
convergence on a general solution. 

To measure the fitness of a candidate equation, we evaluate the 
equation twice for each data point. First evaluating f(x), and then 
evaluating a second time on this result to calculate f(f(x)). We then 

compare the how close the iterated equation comes to the target 
iterated function g(x) of the data. 

There are many ways to summarize the error over the data set. We 
used the mean absolute error because it is simple and fast to 
compute. However, other statistics such as squared error or 
correlation are likely to also work well.  

3.3 Verifying Solutions 
For this problem, we are looking for an exact analytical solution. 
Therefore, we want to verify that the final solution we get is 
symbolically correct to the iterated map.  

The validation set helps us to weed out most overfit solutions but 
there could still be degenerate solutions that appear numerically 
correct, but do not analytically derive the target map. Ideally, we 
would check this in the algorithm itself, perhaps as part of the 
fitness function. However, we found it was sufficient to perform 
this verification step at the end of evolution. 

Many of the iterated functions require difficult simplifications to 
reduce down to the exact target – for example, the f(x) = 2 cos(√2 
cos-1(x/2)) solution described above. We used the Sage 
Mathematics Software [13] to simplify the iterated solutions. 

3.4 Experimental Setup 
We used the symbolic regression algorithm [14-16] to search for 
free-form solutions to the iterated function f(f(x)) = x2 – 2.  

We used the deterministic crowding selection method [17], with 
1% mutation probability and 75% crossover probability. The 
encoding is an operation list acyclic graph with a maximum of 32 
operations/nodes [9]. Single-point crossover exchanges operations 
in the operation list at a random split. The operation set contains 
addition, subtraction, multiply, divide, exponential, logarithm, 
sine, and cosine operations. 

We distributed the symbolic regression evolution over 8 quad core 
computers (32  total cores) using the island distributed 
computation method [18, 19]. The island model partitions the  
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Figure 1. The validation fitness of the most fit iterated equation (left) and the percentage of runs that found an exact solution
(right) over the running time of the algorithm. The evolutionary runs converge onto a near perfect fitness solution after
approximately two minutes. Results are averaged over 50 independent trials. Error bars show the standard error. 
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population of solutions into separated smaller populations residing 
on each computer (or core).  

4. RESULTS 
In this experiment, we did not provide the inverse cosine 
operation to the symbolic regression algorithm. Therefore, the 
algorithm was forced to search for a completely new solution that 
has not been previously identified, assuming one does exist. 

In our first evolutionary run, the algorithm quickly converged 
onto an exact solution. Figure 1 shows the validation fitness of the 
highest fit solution over 50 evolutionary runs. The evolution 
converged onto a perfect fitness solution (epsilon error) within 
130 seconds (approximately 2 minutes). This solution is: 

2

( 2 )( )
( 2 )

b b axf x
ax b ax

−
=

−
 

where a = 1.16871·1018 and b = 0.683913 are parameter constants. 
It is striking that the parameter a is so large in this solution. It is 
very suspicious that an exact solution would really use such a large 
parameter constant. In fact, our initial thought was that the 
evolutionary algorithm had found a way to exploit the floating-point 
round-off in the hardware. Additionally, if we compose this solution 
with itself, the result is a rather complex rational function – not 
simplifying neatly to the exact x2 – 2 of the problem. It appeared 
that the solution was degenerate; perhaps numerically correct but 
not analytically. 
However, we noticed a peculiar trend in the logs of the evolutionary 
run. Figure 2 shows the sequence of solutions during the run leading 
up to the final solution. The sequence shows that the algorithm 
identified the basic structure of this solution early on, and then 
gradually, solutions evolved to increase the parameter a 
incrementally. We repeated the evolution a number of times; each 
time getting a similar result.  
The parameter a appears to stop increasing at approximately 1018 
due to the floating-point precision of the computer. Increasing it 
further causes the floating-point calculations performed for this 
solution to produce NaN error codes. Perhaps the equation would 
become more accurate however with higher precision arithmetic. 
Based on this, we suspected that the evolution was attempting to 
push this parameter constant to positive infinity – much like taking 
a limit. By taking this limit symbolically, we get the following 
result: 

2

( 2 )( )
( )

b b axf x
ax b ax

−
=

−
, 

( ) ( )( )
( ) ( )( )2

2 ( )
( )

( ) ( )

b b a f x
f f x

a f x b a f x

−
=

−
, 

( ) ( )( )
( ) ( )( )2

2 ( )
lim ( ) lim

( ) ( )a a

b b a f x
f f x

a f x b a f x→∞ →∞

−
=

−
, 

( ) 2lim ( ) 2
a

f f x x
→∞

= − , 

Therefore, we verified this is an exact solution – both symbolically 
and numerically – to the iterated function we want to solve by 
taking the limit.  
Investigating further, we find that the limit of this function is 
independent of the value of the parameter b; it drops out after the 
second derivative of the numerator and denominator during the limit 
calculation. However, b must be non-zero, otherwise f(x) = 0 
trivially. Therefore, we refine our solution further by setting b = 1: 

2

1 2( )
(1 2 )

axf x
ax ax

−
=

−
 

where the limit of a is taken to positive infinity.  
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Figure 2. A sequence of solutions during an evolutionary run. 
The most fit solutions at several times are shown in order from 
top to bottom. Higher fitness (less negative) is better. A general 
structure is found quickly, and a parameter constant then 
grows to infinity to converge on an exact solution. Equations 
have been factored symbolically from their raw encoding.  
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This appears to be the first non-trigonometric solution to this 
problem discovered thus far, and the only other solution yet 
reported in the literature. 

5. CONCLUSIONS 
Iterated functions arise in many scientific fields, yet few tools 
exist to analyze them or find their solutions. We have proposed 
genetic programming as a method to find free-form solutions to 
iterated function problems. This approach is applicable to 
arbitrary problems, and does not require deep mathematical 
insight into each particular family of iterated functions. 

We demonstrated this approach on the notoriously difficult 
iterated function problem of finding f(x) given f(f(x)) = x2 – 2. 
Based on the evolved solution for this problem, we were able to 
identify a novel solution to this problem. The solution composed 
was verified to be both numerically and symbolically exact.  

Our results suggest that genetic programming may be a valuable 
tool for finding different solutions that do not rely on specific 
solution forms for arbitrary iterated function problems. 
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