
Evolution of Synthetic RTL Benchmark Circuits

with Predefined Testability1

TOMAS PECENKA

ON Semiconductor

LUKAS SEKANINA and ZDENEK KOTASEK

Brno University of Technology

This paper presents a new real-world application of evolutionary computing in the area of digital
circuits testing. A method is described which enables to evolve large synthetic RTL benchmark
circuits with a predefined structure and testability. Using the proposed method a new collection
of synthetic benchmark circuits was developed. These benchmark circuits will be useful in a
validation process of novel algorithms and tools in the area of digital circuits testing. Evolved
benchmark circuits currently represent the most complex benchmark circuits with a known level
of testability. Furthermore, these circuits are the largest circuits that have ever been designed
by means of evolutionary algorithms. This paper also investigates suitable parameters of the
evolutionary algorithm for this problem and explores the limits in the complexity of evolved
circuits.

Categories and Subject Descriptors: B.8.1 [Hardware]: Performance and Reliability—Reliability,
Testing, and Fault-Tolerance

General Terms: Design

Additional Key Words and Phrases: benchmark circuit, evolvable hardware, testability analysis

1. INTRODUCTION

Simultaneously with the growing complexity of digital circuits, we can observe the
growing complexity of CAD tools that are utilized to produce and verify these
circuits. The evaluation and comparison of different algorithms and methodologies
utilized in these CAD tools is one of the most difficult tasks CAD users are faced

1THIS IS DRAFT, (C) ACM

This research was supported by the Grant Agency of the Czech Republic under contract
No. 102/07/0850 “Design and hardware implementation of a patent-invention machine”,
No. 102/05/H050 “Integrated Approach to Education of PhD Students in the Area of Paral-
lel and Distributed Systems” and the Research Plan No. MSM 0021630528 “Security-Oriented
Research in Information Technology”.

Authors’ addresses: T. Pecenka, ON Semiconductor, Bozeny Nemcove 1720, 756 61 Roznov pod
Radhostem, Czech Republic, e-mail: tomas.pecenka@onsemi.com, L. Sekanina and Z. Kotasek,
Faculty of Information Technology, Brno University of Technology, Bozetechova 2, 612 66 Brno,
Czech Republic, e-mail: {sekanina;kotasek}@fit.vutbr.cz.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM -/2008/0700-0001 $5.00

ACM, Vol. 1, No. 1, 01 2008, Pages 1–21.

2 · T. Pecenka, L. Sekanina and Z. Kotasek

with. Over the years, there have been many attempts to create and use benchmark
circuits for evaluation and comparison of these algorithms and methodologies.

For people involved in testing, ISCAS [Brglez and Fujiwara 1985; Brglez et al.
1989] and ITC’99 [Corno et al. 2000b] benchmark circuits are well-known and most
commonly used. Unfortunately, the most complex circuit of these sets consists
only of 231,320 gates and 6,642 flip-flops. In comparison to the complexity of de-
signs which can be implemented in current ASIC2 chips, the complexity of existing
benchmark circuits is too low. That is especially true for “open-source” benchmark
circuits. This problem might be overcome by the utilization of synthetic benchmark
circuits.

The synthetic benchmark circuits have been recognized as a viable alternative to
the standard benchmark circuits (e.g. [Darnauer and Dai 1996; Iwama et al. 1997;
Pistorius et al. 1999; Verplaetse et al. 2002; Hutton et al. 2002; Kundarewich and
Rose 2004]). They are usually created by an automated procedure and constrained
to have a specific set of desirable characteristics (such as the size, topology, testa-
bility and function). In particular, a variable testability and a sufficient complexity
of benchmark circuits are crucial features for testing modern CAD test tools. Un-
fortunately, no approach is known for the design of synthetic benchmark circuits
that are both testable and complex.

The objective of this paper is to propose a new method for developing synthetic
RTL3 benchmark circuits with required structure, complexity and testability. The
approach is based on the concept of the evolutionary circuit design [Higuchi et al.
1993; Thompson 1998; Miller et al. 2000]. Candidate benchmark circuits are en-
coded as strings (chromosomes) and an evolutionary algorithm is utilized to per-
form a search (in the space of digital circuits) for those circuits that maximize a
cost function defined by the user.

The idea of evolutionary design of benchmark circuits was initially introduced
in [Pecenka et al. 2005]; however, only relatively small circuits were evolved (up
to 150,000 gates). Pecenka et al. [2006] described the methodology which allows
to create a set of synthetic benchmark circuits with predefined testability. In this
paper, it is reported that by careful parameter setting of the evolutionary algorithm,
circuits of complexity up to 1.2M can be evolved. Finally, this paper also presents a
methodology allowing to validate obtained circuits using a state of the art ATPG4

tool, FlexTest (Mentor Graphics).
The evolutionary circuit design has allowed engineers to discover novel electronic

circuits automatically [Thompson 1998; Miller et al. 2000; Sekanina 2004]. Some-
times the evolved circuits exhibit features that the conventional design approaches
have never been able to achieve. On the other hand, only relatively small circuits
were evolved automatically so far. Various reasons can be identified why the evo-
lutionary approach is not “scalable” (i.e. it is not able to generate circuits of an
arbitrarily increasing complexity). It can be stated that by increasing the number
of inputs of a digital circuit by one, the evaluation time doubles (i.e. it grows ex-
ponentially), assuming that all possible input combinations are considered in the

2Application Specific Integrated Circuit
3Register Transfer Level
4Automatic Test Pattern Generation

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 3

fitness calculation process. A reasonable strategy seems to be to include only a
subset of input vectors into a training set; however, for example, for arithmetic
circuits some papers show [Miller and Thomson 1998] that evolved circuits do not
usually work correctly for the remaining input vectors. If it was possible to com-
pletely evaluate a candidate solution in a polynomial time (with respect to the
number of circuit inputs and components) the evolutionary design process would
be more effective and resulting circuits would be more complex. That is possible in
some domains only. For example, image filters consisting of thousands gates were
evolved using the so-called functional-level evolution [Sekanina 2004]. In this case,
the fitness function does not consider all possible combinations of input pixels; only
a representative training image has to be used to obtain a good image filter.

In order to evolve complex benchmark circuits, the choice of a suitable testability
evaluation method is a crucial decision. The first option is to use an ATPG tool,
generate test sequence for a candidate benchmark circuit and use a Fault Coverage
(FC) parameter as the testability measure. An advantage of this approach is that
the testability is evaluated very accurately. Unfortunately, the time complexity
of ATPG algorithms is exponential. Another option is the use of some of testa-
bility analysis (TA) methods. For our purposes, a method with the polynomial
time complexity was chosen. The method utilizes the average controllability and
observability parameters to estimate the circuit testability [Strnadel 2004]. This
paper shows that by combining the polynomial time TA method utilized in the fit-
ness function with an evolutionary search method, benchmark circuits of required
testability and complexity can be developed.

Our contribution to the area of automated design of benchmark circuits can be
summarized as follows. A methodology was developed which allows synthetic RTL
benchmark circuits to be created. The benchmark circuits are expected to be used
to verify the effectiveness of algorithms and methodologies which aim at increasing
testability parameters of digital circuits and compare different methodologies. As
a result of trade-off among testability, area overhead, additional costs, etc., not
only highly testable circuits can be developed. Thus, the methodologies to improve
testability must be able to process circuits with various levels of testability and
provide the user with the recommendations how to improve testability. As an
important aspect of our approach, we see the fact that benchmark circuits with
different levels of testability can be evolved – based on user requirements in terms
of circuit structure, complexity and testability.

To summarize, the existence of the set of benchmark circuits could be an im-
portant requisite for those who develop and implement testability improvement
methodologies. Based on the use of the benchmark set they will be able to state
how their methodology or CAD tool solve the problem of testability for its various
initial values.

2. FROM CIRCUIT TESTING TO EVOLUTIONARY CIRCUIT DESIGN

The proposed method combines the concepts of synthetic benchmark circuits, testa-
bility analysis and evolutionary design of digital circuits. This section briefly intro-
duces these areas.

ACM, Vol. 1, No. 1, 01 2008.

4 · T. Pecenka, L. Sekanina and Z. Kotasek

2.1 Benchmark circuits

Benchmark circuits are typically used for verification of CAD test tools. Recently,
various benchmark sets have been proposed which describe digital circuits at dif-
ferent levels of abstraction. A classification of categories of benchmark sets can
be found, for example, in [Harlow 2000]. In the testing community, the following
benchmark sets are commonly used:

ISCAS benchmarks. The set originally consisted of 41 gate-level circuits – 10
combinational ISCAS’85 circuits [Brglez and Fujiwara 1985] and 31 sequential IS-
CAS’89 circuits [Brglez et al. 1989]. In 1993, an Addendum [Gloster 1993] was
released that included modifications to some of the original ISCAS circuits and
also some new circuits. The ISCAS benchmarks represent a wide variety of prob-
lem domains and they are still cited very frequently. Unfortunately, the complexity
of the ISCAS circuits is too low; the most complex circuit consists of only 22,179
gates and 1,636 flip-flops [Brglez et al. 1989].

ITC’99 benchmarks. The set was introduced at the International Test Confer-
ence in 1999. The set originally consisted of 22 circuits described both at gate
and Register Transfer levels [Corno et al. 2000b]. The most complex circuit (b18)
contains 68,752 gates and 3,320 flip-flops [Corno et al. 2000b]. The original set was
revised in 2002. The most complex circuit (b19) of the second release consists of
231,320 gates and 6,642 flip-flops [URL-ITC99 1999].

ITC’02 benchmarks. The set consists of 12 circuits described at the level of mod-
ules [Marinissen et al. 2002]. These circuits are intended to be used for the verifi-
cation and comparison of methods and tools for modular testing of SoCs (System-
on-Chip).

In addition, some other minor benchmark sets and individual circuits are occa-
sionally utilized (e.g. CMU-DSP, Diffeq, Tseng, . . .).

During the recent years, the ASIC design flow is rapidly moving from the gate-
level towards higher description levels. Most design activities are now performed at
the Register Transfer level (RT-level). Unfortunately, the complexity of the existing
RT-level benchmark circuits is too small with regard to a potential of current ASIC
technology.

2.2 Synthetic benchmark circuits

Recently, the synthetic benchmark circuits have been recognized in some areas as a
viable alternative of standard benchmark circuits [Darnauer and Dai 1996; Iwama
et al. 1997; Pistorius et al. 1999; Verplaetse et al. 2002; Hutton et al. 2002; Kun-
darewich and Rose 2004]. Synthetic benchmarks are the circuits created by an
automated process and constrained to have a specific set of desirable characteris-
tics. They were initially used by Darnauer and Dai [1996] who utilized them to
test the FPGA place and route algorithms. Later, Iwama et al. [1997] have used
synthetic benchmarks for testing of logic optimizers. Pistorius et al. [1999] and
later Verplaetse et al. [2002] and Stroobandt et al. [2000] have created tools for
generating synthetic benchmark circuits for partitioning algorithms testing. Hut-
ton et al. [2002] and Kundarewich and Rose [2004] have developed a tool for the
design of sequential benchmark circuits by cloning of existing circuits. The cloned

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 5

circuits have been used for testing partitioning, place and route algorithms.

Unfortunately, no approach is known where evolutionary techniques are used to
generate synthetic benchmark circuits and also no synthetic circuits with predefined
testability are available. In this paper a novel method which utilizes evolutionary
algorithm to generate benchmark circuits with predefined testability properties is
presented. This kind of circuits would be very useful for verification of CAD tools
used in testing.

2.3 Testability analysis methods

In order to automatically generate a circuit with a predefined testability, an algo-
rithm with a reasonable time complexity that is able to evaluate the testability of a
digital circuit is needed. Usually, the testability of a circuit is evaluated by means
of the controllability and observability parameters. Existing TA approaches differ
in the way in which the controllability and observability are defined and measured.
In general, the controllability (e.g. of an internal circuit node) is understood as the
ability to control the node value from the circuit primary inputs. If it is possible
to control the node inputs then such node is called a controllable node. Similarly,
a node is referred to as an observable node if a value existing at the node output
can be observed at the circuit primary outputs. The goal of the controllability
(observability) measures is to evaluate the easiness of controlling (observing) signal
values. On the basis of these values, the testability of a circuit is calculated.

In this work, we are interested in TA methods working at RT-level. The first
RT-level TA methods (e.g. [Chen et al. 1991; Bhatia and Jha 1994]) have used two-
valued evaluation of the circuit nodes (i.e., node is either testable or non-testable).
Chen et al. [1991] suppose a node as controllable if there exists a sequence of
executable paths in the data flow graph such that after the execution of these
paths, the content of the node can take any possible value by adjusting the input
values. Bhatia and Jha [1994] introduced utilization of transparency properties of
operators (a neutral element is used as one of the operands: zero for additions, one
for multiplications,) to check the controllability and observability of the circuit
nodes. The two-valued evaluation was replaced in [Flottes et al. 1997], where the
controllability and observability was evaluated by determination of the probability
for justifying and propagating any test data to internal nodes. These probabilities
were computed by means of transparency coefficients of operations and the set of
elementary data transfers performed between data-path components.

Corno et al. [2000a] introduced three different metrics for taking observability
into account during RT-level ATPG. It was demonstrated that using a more exact
controllability and observability metric during RT-level test generation improves the
attained fault coverage. Fernandes et al. [2004] presented the first non-simulation
based approach that efficiently computes controllability of RT-level constructs as a
function of the probability distribution at the inputs, but no information about the
time complexity of the method was given. Strnadel [2004] has introduced a Virta
(Virtual ports Testability Analysis) method which is based on modeling of selected
testability properties (the controllability and observability) of circuit components.
It allows performing TA of the circuit in the quadratic time complexity with respect
to the number of components in the circuit. For the purpose of generating synthetic

ACM, Vol. 1, No. 1, 01 2008.

6 · T. Pecenka, L. Sekanina and Z. Kotasek

benchmark circuits a new TA method called ADFT5 based on Virta method was
developed [Pecenka et al. 2006].

2.4 Evolutionary approaches in the field of testing of digital circuits

In the area of testing, evolutionary algorithms (and genetic algorithms, especially)
have been utilized many times in various optimization tasks (for example, [Mazumder
and Rudnick 1998]). In case of evolutionary circuit design, Thompson [1998] has
initiated a research in evolution of fault tolerant circuits. Later, Garvie and Thomp-
son [2003] have directly evolved simple digital circuits containing a built-in self-test
system. Sekanina and Ruzicka [2003] have demonstrated that inherently easily
testable image filters can be generated automatically for real-world applications.
Lohn et al. [2003] performed functional recovery of a quadrature decoder after a
stuck-at-zero fault for a model of an FPGA. Corno et al. [2002] have utilized ge-
netic programming to automatically induce test programs for a microcontroller. In
order to perform an autonomous functional self-recovery in FPGAs, Zhang et al.
[2005] introduced a population-based consensus scheme to detect and repair faults.
Regarding the evolutionary design of benchmark circuits with required testability
properties, the initial study was introduced in [Pecenka et al. 2005] and a set of
evolved benchmark circuits was presented in [Pecenka et al. 2006].

3. A DESIGN METHOD FOR DEVELOPING BENCHMARK CIRCUITS

A method is proposed which allows to design RT-level benchmark circuits with a
predefined testability. The user is supposed to specify the number of primary inputs
and outputs of a target circuit, the number of components, the type of components
and the required testability. The resulting circuit is in the form of a structurally-
described RT-level VHDL6 code. The evolved circuit typically represents data-path
of a complex circuit7.

3.1 High-level description of evolutionary algorithm

The pseudocode of the proposed evolutionary algorithm is given in Figure 1. An
initial N -member population P (typically, N ≈ 20 − 50) of candidate benchmark
circuits (that are encoded as constant-length strings) is generated randomly. A
randomly generated circuit consists of components taken from a set of components
provided by a user. New populations are formed using a tournament selection (with
the base 2) and a mutation operator. The mutation operator modifies M percent
(M ≈ 2%) of circuit interconnections. The R percent (R ≈ 95%) of parents from
the previous population are replaced by mutated versions of the parent circuits
(2-tournament is used). The elitism is ensured. The evolution is left running for G
(G ≈ 100 − 200) generations.

5Automated Design for Testability tool
6Very High-Speed Integrated Circuit Hardware Description Language
7RTL designs can typically be divided into two parts: a data part and a control part. Testing
methods are usually oriented to the data-path testing, because a controller can be modified to be
self-testable (see [Hellebrand and Wunderlich 1994]).

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 7

Fig. 1. The principle of the design method

3.2 Circuit representation in the chromosome

A candidate benchmark circuit is considered as a graph consisting of nodes (com-
ponents) whose inputs and outputs are uniquely numbered. Primary inputs and
outputs of the circuit are numbered too. Because 3-state nets are not allowed in
resulting circuits, any component input can be connected to only a single compo-
nent output. As the user specifies the number of components (K) and this number
remains constant, every circuit can be represented as a constant-length array in
which the index is the component input and the value is the identification of the
connected output. The length of chromosome is

∑K

i=1 ki +no, where ki is the num-
ber of inputs of i-th component and no is the number of primary outputs. Primary
inputs are treated as outputs of a component and primary outputs are treated as
inputs of a component connected to the circuit. Figure 2 shows a circuit consist-
ing of three components, its encoding and two options for the mutation operator.
Registers are not reflected in the proposed representation; they are inserted into a
circuit before the TA is performed.

3.2.1 Mutation operator. The mutation operator is applied to modify connec-
tions in the circuit under development. It operates in the following way (see Fig-
ure 2):

(1) An input of a component (or a primary output) is randomly selected. The
mutation operator will be applied on this input.

ACM, Vol. 1, No. 1, 01 2008.

8 · T. Pecenka, L. Sekanina and Z. Kotasek

o1

o1

o1

o1

i1

i1

i1

i1

i2

i2

i2

i2

1

3

5

7

6

4

2

1

3

4

52

Primary outputs/ inputs of components (index)

Primary inputs/ outputs of components (values)

1

5 1 32 3 4 5

2 3 4 5 6 7
c)

M
X

M
X

M
X

M
X

-

-

-

-

+

+

+

+

Fig. 2. Two types of mutation (a, b) and circuit representation in chromosome (c)

(2) If the output connected to this input is also connected to another input(s)
then the selected input is simply reconnected to a randomly selected output of
another component or to one of the primary circuit inputs (see Figure 2a).

(3) If the output connected to this input is not connected to another input(s) then
an input of another component (or a primary output) of the circuit under
design is randomly selected and the selected inputs are simply reconnected (see
Figure 2b).

(4) The mutation operator always maintains the width of the data-path.

The principle of mutation operator is demonstrated in Figure 2. For the first
type of mutation (see Figure 2a), an input gate of multiplexer is selected and the
connection connected to this gate is simply reconnected to another connection with
the same data-path width. For the second type of mutation (see Figure 2b), another
input gate of multiplexer was selected. The first type of mutation cannot be used
because no other input gate is connected to this connection and the application
of this operator will cause the output connected to this connection to become
disconnected. Hence, the second type of mutation should be used. It selects a
different input gate with the same data-path width and interchanges the connections
connected to these inputs.

3.3 Fitness calculation

Obviously, not all randomly generated circuits are valid benchmarks. Before a
fitness value is assigned to a candidate circuit, circuit properties are examined.
The fitness function, which has to be maximized here, analyzes three features of
candidate circuits that we have recognized as important for our method. In partic-
ular, circuit structure, interconnections structure and circuit testability have to be
inspected.

3.3.1 Circuit structure analysis. A candidate circuit is analyzed with the goal
to identify isolated sub-circuits. An isolated sub-circuit is a subset of components

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 9

which are mutually interconnected, but no output port of any component involved
in the isolated sub-circuit is (nor even indirectly) connected to the circuit primary
outputs (see Figure 3a). If an isolated sub-circuit is removed then the function of
the circuit is not affected. The value of the structure parameter is a real number
from 〈0; 1〉 interval:

structure = 1 −
useless comps

comps count
, (1)

where useless comps denotes the number of components that belong to isolated
sub-circuits (i.e. the number of components not affecting circuit behavior) and
comps count denotes the number of circuit components.

If an isolated sub-circuit exists in a candidate circuit then the value of connects
and testability parameters (see Equation 4 in next section) is not evaluated and
these parameters are set to 0; otherwise, the circuit interconnection and testability
analysis follows.

o1

i1

i2

M

X

-

- R

R

M

X
i3

i4 o2

a)

b)

c)

o1

i3

+

+

R

+i2

i1

M

X

o2

R

R

Fig. 3. An example of a circuit with an iso-
lated sub-circuit (a), shorts between inputs
(b) and direct connections between primary
inputs and outputs(c).

Fig. 4. A circuit with automatically inserted
registers

3.3.2 Circuit interconnection analysis. The goal of the interconnection analysis
is to evaluate the variability of circuit interconnections. Each candidate circuit is
analyzed for shorts between the inputs that belong to the same component (see
Figure 3b) and for direct connections from primary inputs to primary outputs
(see Figure 3c). Comp inputs denotes the number of ports of all components and
pri outputs denotes the number of circuit primary outputs. The value of connects
parameter results in a real number from 〈0; 1〉 interval:

connects = 1 −
shorts + direct connects

comp inputs + pri outputs
(2)

3.3.3 Testability evaluation. Registers are automatically inserted into the cir-
cuit structure before the testability analysis is performed. A register is inserted to
the output of each combinational component (except of the multiplexers which are

ACM, Vol. 1, No. 1, 01 2008.

10 · T. Pecenka, L. Sekanina and Z. Kotasek

understood as interconnecting components). If there are more possibilities for reg-
ister placement, a solution minimizing the number of registers is selected. Figure 4
shows an example of a circuit and registers placement.

In our method, the testability of the circuit is expressed by the controllability
and observability parameters. The utilized testability analysis method was formally
defined and its time complexity was analyzed in [Strnadel 2004; Pecenka et al. 2006].
The method works as follows:

For the purposes of the testability analysis, two weighted digraphs representing
the circuit structure and testability properties are constructed. The first digraph
(GS) represents the test-pattern data-flow and the second digraph (GI) represents
the test-response data-flow. Interface ports of all in-circuit components are treated
as vertices of GS (GI). An oriented edge exists between two vertices if a test data
can be transferred between these vertices, i.e. if a wired connection exists between
corresponding in-circuit ports or a component exists which allows to transfer test-
vectors (responses) from the input port (first vertex) to the output port (second
vertex). These pairs of vertices are put in the relation together with the information
about the required flow-condition (e.g. a rising edge of a clock signal, a particular
combination of values on other input ports etc.). These relations represent a basis
for constructing GS (GI) edges.

The TA algorithm is constructed as a graph-searching algorithm over GS and GI .
During the search process, the accessibility of ports from circuit primary inputs is
analyzed in GS (this step corresponds to the controllability analysis) and the acces-
sibility of ports at circuit primary outputs is analyzed in GI (this step corresponds
to the observability analysis). Each evaluated testability attribute is reflected as
a real number from 〈0; 1〉 interval, where 0 indicates an absence of this attribute
and 1 indicates the occurrence of the attribute in its best form. The evaluation
of x-controllability (x means a port of the circuit) can be understood as the eval-
uation of “easiness of controlling values at x by means of stimuli generated at the
circuit primary inputs”. Alike, the evaluation of x-observability can be understood
as the evaluation of “easiness of observing values at x by means of circuit primary
outputs”. Because x is understood as testable if it is both controllable and observ-
able, the evaluation of the overall testability is a function of the controllability and
observability parameters. An example of the circuit with evaluated controllability
and observability parameters (according to [Strnadel 2004]) is given in Figure 5.

It was proven that the algorithm runs in O(|V (GS)| · |E(GS)|+ |V (GI)| · |E(GI)|)
time complexity, where V (GS) is the set of vertices and E(GS) is the set of edges
of test-pattern data-flow digraph GS [Strnadel 2004]. Similarly, V (GI) is the set of
vertices and E(GI) is the set of edges of test-response data-flow digraph GI .

In the fitness function, the results of TA – the average controllability (avg cont)
and average observability (avg cont) – are compared with the values of controlla-
bility (req cont.) and observability (req obs.) requested by the user. A final value
of the testability parameter is a real number from 〈0; 1〉 interval, which describes
the fulfilment of the user requirements, i.e.

testability = 1 − 0.5 · (req cont. − avg cont)
2
− 0.5 · (req obs. − avg obs.)

2
(3)

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 11

i1

i2

A

D

D

2

S

U

B

1

A

D

D

1

M

X

1

M

X

2

i3

i4

o1

o2

R

1

R

2

R

3

R

4

S

U

B

2
0.553

0.993

1.000

1.000

0.736

0.436

0.336

1.000

0.433

0.439

0.934

0.362 0.741

0.547

1.000

0.433

0.521

0.794

0.993

0.436

0.413

1.000

0.741

0.547

1.000

0.380

0.697

0.547

0.985

0.439

0.553

0.736

0.512

0.794

0.407

1.000

0.413

1.000

1.000

0.380

0.413

1.000

x.xxx . . . controllability
yyyy . . . observability.

Fig. 5. Example of the circuit with evaluated controllability and observability parameters.

3.3.4 Overall fitness. The overall fitness function (given by Equation 4) com-
bines the results of the interconnection analysis and testability analysis (note that
the second one is more important here). The resulting fitness value is a real number
in 〈0; 1〉 interval:

fitness = 0.25 · structure + 0.25 · connects + 0.5 · testability. (4)

As the result of testability analysis is the most important and results of the
interconnection and structure analysis are less important, the weights of coefficients
in the fitness function are determined (experimentally) as 1:1:2.

3.4 Implementation of the proposed method

The Cirgen tool was developed which implements the proposed method [Pecenka
2006]. An example of .xml code is given which is used by the user to specify the
requirements on circuits and testability properties.

<circuit>

<testability controllability="0.75" observability="0.75"/>

<evolution population="30" replacement="0.95" mutation="0.02"

steps="200"/>

<primary inputs="5" outputs="3"/>

<comp name="SUB" width="4" quantity="5"/>

<comp name="ADD" width="4" quantity="5"/>

<comp name="MUX2" width="4" quantity="2"/>

</circuit>

From the example it can be seen that 75% controllability and 75% observability
is required in average. There are 30 individuals in the mating pool, the mutation
probability is 2% and 95% of worst individuals are replaced in each generation. The
evolutionary algorithm produces 200 generations. The resulting circuit is expected
to have five primary inputs and three primary outputs. It will consist of five 4-bit
subtractors, five 4-bit adders and two 4-bit multiplexers, i.e. of 12 components
in total. The Cirgen generates the benchmark circuit according to the predefined
requirements.

ACM, Vol. 1, No. 1, 01 2008.

12 · T. Pecenka, L. Sekanina and Z. Kotasek

4. EXPERIMENTAL RESULTS

4.1 Searching for suitable parameters of evolutionary algorithm

The objective of the first experiment is to find suitable values of the population size
(N) and the mutation rate (M). The experiment is performed with 42 different
combinations of the population size (N = {5, 10, 20, 50, 100, 200}) and the muta-
tion probability (M = {5%, 10%, 20%, 40%, 60%, 80%, 100%}). The replacement
parameter is fixed to R = 90% (90% of individuals from the parent population
come into tournament with individuals from offspring population). The number of
evaluations in each evolutionary run is fixed to 2500 (G = 500 for N = 5, G = 125
for N = 200, . . .) and 90% controllability and observability is required. Firstly,
fifteen 50-component circuits were evolved for each combination of parameters. Sec-
ondly, ten 500-component circuits were evolved under the same scenario. Figure 6
shows average fitness values of resulting circuits. The best results have been ob-
tained for the population size of 5–20 individuals and the mutation parameter set
at 10%–20%.

� � � � � � � � � 	

� � �

� �
� �
� �
� � �
� � �

� � � � �

� � � �

! " # $ %

& ' () *

+ , - . .

/ 0 1 1 /

23 4
567
78 9
:

;=< > ? > @ ACB DFEFE @ B > G DFE HJI KML N
O P Q
R S T U
O V
W U
X Y Z [
\

a) 50-component circuit

] ^ _ ` a b c d e f g
h i i

j
k l
m n
o p
q r r
s t t

u v w x u

y z { | y

} ~ � � }

� � � � �

� � � � �

� � � � �

�� � �
���
� ��

�=� � � � � �C� �F�F� � � � � �F� J¡ ¢M£ ¤
¥ ¦ §
¨ © ª «
¥ ¬
 «
® ¯ ° ±
²

b) 500-component circuit

Fig. 6. Average fitness values of the best individuals for different population sizes and mutation
parameters.

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 13

4.2 Structure of generated circuits

The objective of the second experiment is to verify the structure, synthesizability
and testability of evolved circuits. A circuit consisting of 20 components and high
testability and a circuit consisting of 30 components and low testability were evolved
with the following parameters: N = 30, G = 200, M = 2% and R = 95% (see
Section 3.1 for description). Figures 7(a) and 7(b) show RT-level structure of
evolved benchmark circuits. Note that as the purpose of these figures is to show
the structure of circuits, the component types and description are irrelevant and
thus invisible. The first circuit consists of 20 components and requires 2645 gates
after synthesis to TSMC8 0.35µ primitives. We required 80% observability and 80%
controllability on average; the results obtained by ADFT are 80.6% for observability
and 74.5% for controllability. The second circuit consists of 30 components and
requires 3605 gates after synthesis to TSMC 0.35µ primitives. We required 20%
observability and 33% controllability on average; the obtained results are 20.4%
for observability and 36.7% for controllability. Considering a target use of these
benchmark circuits, the results are acceptable. Notice that registers were included
automatically to the circuits after evolving the circuit structure (see Section 3.3.3),
i.e. the figures contain more elements than we have specified.

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

CLK

PRI_IN_0(7:0)

C_MUX2_1_SEL

C_MUX2_2_SEL

PRI_IN_7(7:0)

PRI_IN_9(7:0)

PRI_IN_5(7:0)

PRI_IN_6(7:0)

C_MUX2_4_SEL

PRI_IN_1(7:0)

PRI_IN_3(7:0)

PRI_IN_4(7:0)

PRI_IN_8(7:0)

PRI_IN_2(7:0)

C_MUX2_3_SEL

PRI_OUT_6(7:0)

PRI_OUT_2(7:0)

PRI_OUT_3(7:0)

PRI_OUT_5(7:0)

PRI_OUT_7(7:0)

PRI_OUT_8(7:0)

PRI_OUT_0(7:0)

PRI_OUT_1(7:0)

PRI_OUT_9(7:0)

PRI_OUT_4(7:0)

a)

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

sel

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

a<7:0>

b<7:0>

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

d<7:0>

clk

q<7:0>

PRI_IN_4(7:0)

CLK

PRI_IN_1(7:0)

C_MUX2_5_SEL

C_MUX2_6_SEL

C_MUX2_10_SEL

C_MUX2_7_SEL

PRI_IN_0(7:0)

C_MUX2_3_SEL

C_MUX2_9_SEL

C_MUX2_4_SEL

C_MUX2_8_SEL

PRI_IN_3(7:0)

C_MUX2_1_SEL

PRI_IN_2(7:0)

C_MUX2_2_SEL

PRI_OUT_0(7:0)

PRI_OUT_1(7:0)

PRI_OUT_3(7:0)

PRI_OUT_4(7:0)

PRI_OUT_2(7:0)

b)

Fig. 7. Examples of evolved benchmark circuits with high (a) and low (b) testability.

The circuits shown in Figure 7 are structurally different. This difference is caused
by different complexity (number of components) and different requirements on
testability. The circuit shown in Figure 7(a) (80% controllability and observability
required) contains only a few short feedback loops. For the circuit shown in Fig-
ure 7(b), 33% controllability and 20% observability were required. It can be seen
that the circuit contains many long feedback loops. The structure of these circuits

8Taiwan Semiconductor Manufacturing Company Ltd.

ACM, Vol. 1, No. 1, 01 2008.

14 · T. Pecenka, L. Sekanina and Z. Kotasek

matches the well known fact that circuits with many feedback loops are harder to
test than those with fewer feedback loops.

4.3 Exploring limits of the method

The objective of this experiment is to test whether the method is able to satisfy user
requirements for really complex circuits (containing more than hundred thousands
of gates). Experimental setup was left unchanged (see Section 4.2). Experiments
were performed for a 50-, 100-, 500- and 1000-component circuit. For all circuits,
33% controllability and observability were required. Table I summarizes the ob-
tained results (averaged from 5 independent runs).

Table I. Complexity and testability of evolved circuits
Requirements Results

In/Out RTL comps. Controllability Observability Gates Flip-flops Time
[-] [-] [%] [%] [-] [-] [hh:mm]

5/5 50 32.76% 32.15% 27,452 2,509 00:10

10/10 100 32.12% 30.42% 55,720 5,176 00:17

40/40 500 33.57% 30.84% 277,674 25,584 02:47

80/80 1,000 34.35% 29.92% 565,193 51,717 11:52

Table I shows that the proposed tool is able to generate circuits up to thousands of
RT-level components. It takes several hours to obtain the circuits of this complexity
(for a Xeon 2.8GHz CPU, 2GB RAM). The complexity of resulting gate level circuits
depends on the complexity of RT-level components provided by the user. The gate
level complexities given in Table I are obtained for elementary RT-level components
such as 16/32-bit adders, subtractors and multipliers. The method is able to create
circuits with the complexity of millions of gates when complex RT-level components
are provided.

4.4 Controllability/observability design space exploration

The objective of the next experiment is to explore the design space in case that (a)
the controllability is fixed and observability is changed and (b) the observability
is fixed and controllability is changed. The experiment was performed for a 50-
component circuit with the following requirements:

—8 primary inputs and outputs.
—50 components: 8xADD(8bit), 8xSUB(8bit), 8xMUX2(8bit), 8xADD(16bit),

8xSUB(16bit), 8xMUX2(16bit) and 2xMUL(8,16bit).
—The testability requirements on the produced circuits are as follows:

a) 50% controllability (fixed), the observability 0-100%, incremented with the
step of 10%;

b) 50% observability (fixed), the controllability 0-100%, incremented with the
step of 10%.

The average time required for circuit evolution was 9.2 minutes (with Intel Xeon
2.8GHz CPU, 1GB RAM). Results given in Figure 8 are averaged from 20 indepen-
dent runs. It can be seen that requirements on the controllability and observability

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 15

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100M
ea

su
re

d
co

nt
ro

l./
ob

se
rv

. [
%

]

Desired observability [%]

(a) Fixed controllability (50%)

Controllability
Observability
Req. Observability
Req. Controllability

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100M
ea

su
re

d
co

nt
ro

l./
ob

se
rv

. [
%

]

Desired controllability [%]

(b) Fixed observability (50%)

Fig. 8. Testability parameters obtained when (a) the controllability is fixed (=50%) or (b) the
observability is fixed (50%).

parameters can be satisfied only on a specific range of possible values of these pa-
rameters. For example, for the fixed controllability (=50%) and this particular
experimental setup, the algorithm is able to satisfy user requirements in the range
from 10% to 60% (see Figure 8(a)). For the fixed observability (=50%), the al-
gorithm is able to satisfy user requirements in the range from 30% to 90% (see
Figure 8(b)). Consider that these results are strongly influenced by the specifica-
tion provided by the user (i.e. by the number of circuit primary inputs/outputs, the
number of components, testability properties of these components etc.). In general,
not all user requirements can be satisfied, simply because desired circuits probably
do not exist at all.

4.5 Validation of the proposed method

In the proposed method, the user is supposed to specify the requirements on the
circuit structure and on its testability properties. A circuit with “as close struc-
ture and parameters as possible” to the specification is sought by the evolutionary
algorithm. A set of experiments was performed to analyze whether:

(1) The resulting circuits have a desired structure (i.e. they contain the desired
components). A script was created to check circuit structures automatically.

(2) The resulting circuits are synthesizable. Leonardo Spectrum (Mentor Graphics)
is used to check synthesizability (note that all additional optimizations provided
by this tool are disabled).

(3) The resulting circuits have the desired testability properties. FlexTest ATPG
tool is used for the validation of testability.

This analysis was performed on circuits of various complexity (650, 2800, 6500,
13000 and 25000 gates) generated by the Cirgen tool. For each level of the com-
plexity, fifty circuits with various testability were generated with the controllability
and observability in the range of 0% to 100%. Their structure as well as synthe-
sizability was evaluated. Then our ADFT tool (see [Pecenka et al. 2006]) was used
for the testability analysis and the resulting values were plotted at the x-axis of
Figure 9. These circuits were also synthesized to TSMC technology and a cor-
responding test was generated by FlexTest. The relation between the testability
gained by our ADFT tool and the fault coverage parameters measured by Flex-
Test are shown in Figure 9. The testability of circuits measured by ADFT tool
(testability = (controllability + observability)/2) is plotted on the x axis and fault
coverage of tests generated by FlexTest is plotted on the y axis.

ACM, Vol. 1, No. 1, 01 2008.

16 · T. Pecenka, L. Sekanina and Z. Kotasek

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90F
au

lt
co

ve
ra

ge
 (

co
m

m
. A

T
P

G
)

[%
]

Testability measured by ADFT [%]

650 gates
2800 gates
6500 gates

13000 gates
25000 gates

Fig. 9. Relation between the testability measured by ADFT and the fault coverage measured by
FlexTest

It can be seen that when a circuit is evaluated as low testable by our ADFT
tool, the ATPG tool also indicates a low fault coverage. Similarly, when a circuit
is evaluated by ADFT as highly testable, the ATPG tool indicates a high fault
coverage. This relation applies to all considered levels of testability. On the basis
of these experiments, it can be stated that the TA method implemented in the
utilized ADFT tool represents a realistic estimate of testability for the circuit class
designed by the proposed method.

5. EXTENDING FITTEST BENCH06 BENCHMARK SET

The initial implementation of this method was used for developing the FITTest BENCH06
(Faculty of Information Technology, Brno University of Technology, Testability
analysis BENCHmarks) set consisting of circuits e01 – e20 (up to 310,610 gates)
[Pecenka et al. 2006]. Determining suitable parameters of the evolutionary algo-
rithm allowed extending this set with four new circuits e21 – e24 and thus reaching
the complexity of 1.2M gates. Now the set consists of 35 synthetic sequential cir-
cuits. The circuits included into this set can be divided into two groups:

—Variable complexity/variable testability properties – 24 circuits with 6
levels of complexity (2,000; 10,000; 28,000; 150,000; 300,000 and 1,200,000 gates).
For each level of complexity, circuits at four levels of testability properties exist
(the fault coverage measured by FlexTest is approx. 0%; 33%, 66% and 100%).
Table II informs about the structure and complexity of all benchmark circuits
(table’s columns mean: circuit identification, the number of primary gates, the
number of flip-flops, the number of logic gates and the fault coverage).

—Constant complexity/variable testability properties – 11 circuits with
equal complexity (approx. 108,000 gates) but with various testability properties
(fault coverage is in the range from 0% to 100%). Table III informs about circuit
structure and fault coverage.

An additional information about FITTest BENCH06 benchmark set (together
with the tool which was used to develop it) is available at FITTest BENCH06 web-
site [Pecenka 2006]. For each benchmark circuit, a detailed information is provided
about its structure together with the testability gained by FlexTest. Benchmarks
circuits are available both at the RT-level (VHDL code) and gate-level (Verilog,
EDIF) in TSMC 0.35µ elements.

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 17

Table II. Complexity and testability of FITTest BENCH06 benchmarks (1st part)

Circuit PI PO # of # of Fault

FFs gates coverage

e01 86 80 160 1,985 90.45%

e02 86 80 144 1,657 60.69%

e03 86 80 160 2,046 39.43%

e04 86 80 160 2,221 0.00%

e05 186 160 792 10,011 90.11%

e06 186 160 831 9,999 43.90%

e07 186 160 785 9,894 22.87%

e08 186 160 778 9,559 0.00%

e09 211 192 2,020 28,065 91.90%

e10 179 208 1,979 27,853 64.22%

e11 211 200 2,058 28,231 27.46%

e12 203 208 2,106 28,438 0.00%

e13 1,669 1,904 6,304 155,046 89.38%

e14 1,621 1,904 6,368 155,380 64.46%

e15 1,701 1,840 6,368 155,207 31.84%

e16 1,589 1,744 6,368 155,045 12.50%

e17 3,833 4,272 12,672 310,122 81.73%

e18 3,913 4,512 12,608 309,856 56.72%

e19 3,833 4,320 12,576 309,874 40.28%

e20 3,961 4,352 12,736 310,610 23.13%

e21 15,332 17,088 50,688 1,240,488 80.13%

e22 15,652 18,048 59,432 1,239,424 52.33%

e23 15,332 17,280 50,304 1,239,496 38.24%

e24 15,844 17,408 50,944 1,242,440 21.56%

6. DISCUSSION

A common feature of existing evolved circuits is that their complexity is low. Typ-
ically, the most complex circuits contain tens of gates (when a perfect functionality
is required for all possible input combinations [Miller and Thomson 1998]) or a few
thousands of gates (when a satisfactory functionality is required for a chosen subset
of input vectors [Sekanina 2004]). The goal of our research was not to develop a
methodology enabling to evolve circuits with required function but with predefined
testability properties in terms of their structural parameters. With our method-

ACM, Vol. 1, No. 1, 01 2008.

18 · T. Pecenka, L. Sekanina and Z. Kotasek

Table III. Complexity and testability of FITTest BENCH06 benchmarks (2nd part)

Circuit # of # of # of Fault

gates FFs faults coverage

a00 108 627 4 384 399 806 1,28%

a01 108 748 4 448 399 786 10,11%

a02 108 532 4 416 398 012 23,81%

a03 108 876 4 448 400 166 31,60%

a04 108 551 4 416 399 334 40,38%

a05 108 740 4 448 399 534 50,19%

a06 108 607 4 416 399 494 65,56%

a07 108 811 4 448 399 708 66,37%

a08 108 650 4 448 399 566 74,86%

a09 108 345 4 384 398 888 86,54%

a10 108 652 4 448 399 112 94,29%

ology, it is possible to calculate the estimate of testability for thousands of very
complex candidate circuits in reasonable time. Thus, it is possible to evolve large
benchmark circuits containing millions of gates. Surprisingly, the complexity limit
is not determined by our evolutionary algorithm. There was no reason to evolve
more comprehensive benchmarks because the commercial design tools we routinely
use for the circuit design were not able to synthesize such large circuits.

Where are the benefits of the proposed method? Firstly, evolved benchmark
circuits currently represent the most complex benchmark circuits with a known
testability level. These circuits would be useful for testing novel CAD tools in-
tended for the fields such as diagnostics and testing of digital circuits. Secondly,
as benchmark circuits are designed by means of the evolutionary algorithm, they
can contain constructions which do not usually appear in the circuits designed by
classical design techniques that are based on the principles of decomposition and
minimization. Thus, the use of evolved benchmark circuits can reveal those prob-
lems that remain hidden to conventional benchmark circuits.

A possible objection is that proposed benchmark circuits are not real-world cir-
cuits. However, using Cirgen, a user can evolve new benchmark circuits for a specific
domain with components that are extracted from real-world designs. Therefore, the
fraction of synthetic parts and real-life parts can be partly controlled by the user.

Another issue is related to the register placement algorithm. As far as registers
are concerned, they are seen as components through which test is applied and
which are easy to be tested if included into scan chains. Test application problems
could become stronger if the complexity of combinational blocks between registers
increased due to diverse register insertion. Thus, the principles of inserting registers
into benchmarks can impact the testability. The delay of combinational circuitry
between registers is one of the aspects which can be reflected in the design of
benchmark circuits. For this version of Cirgen, we utilized the easiest method – a
register is included at the output of each component (except multiplexers).

In fitness function, three criteria are combined using weight coefficients. In the
future research we would like to extend the method to be able to solve the problem
as a multiobjective optimization problem using the concept of Pareto front. Then,

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 19

we will be able to provide a set of different solutions with the same quality instead
of a single solution.

7. CONCLUSIONS

A new method for generating synthetic benchmark circuits with required structure
and testability was developed. Due to the low time complexity of the utilized TA,
the proposed method allows the design of relatively complex circuits (millions of
gates) with the required testability and complexity. The testability of resulting
circuits was verified by the commercial ATPG tool FlexTest.

The developed method was also utilized to create a set of 35 sequential syn-
thetic benchmark circuits that are available at the RT-level and gate-level. Evolved
benchmark circuits currently represent the most complex benchmark circuits with
a known level of testability. Furthermore, these circuits are the largest circuits that
have ever been designed by means of evolutionary algorithms. The implementation
of the proposed method together with the evolved benchmark circuits are available
at the Cirgen web site [Pecenka 2006].

REFERENCES

Bhatia, S. and Jha, N. 1994. Genesis: A behavioral synthesis system for hierarchical testability.
In Proceedings of European Design and Test Conference, 1994. IEEE Computer Society, Paris,
France, 272–276.

Brglez, F., Bryan, D., and Kozminski, K. 1989. Combinational profiles of sequential benchmark

circuits. In Proceedings International Symposium on Circuits and Systems (ISCAS). IEEE
Computer Society, Portland, OR, 1924–1934.

Brglez, F. and Fujiwara, H. 1985. A neutral netlist of 10 combinational benchmark circuits
and a target simulator in Fortran. In Proceedings International Symposium on Circuits and
Systems (ISCAS). IEEE Computer Society, Kyoto, Japan, 695–698.

Chen, C.-H., Wu, C., and Saab, D. G. 1991. Accessibility analysis on data flow graph: An
approach to design for testability. In Proceedings 1991 IEEE International Conference on
Computer Design: VLSI in Computer & Processors. IEEE Computer Society, 463–466.

Corno, F., Cumani, G., Reorda, M. S., and Squillero, G. 2002. Efficient machine-code test-
program induction. In CEC2002: Congress on Evolutionary Computation. IEEE, Honolulu,
Hawaii, USA, 1486–1491.

Corno, F., Reorda, M. S., and Squillero, G. 2000a. High-level observability for effective
high-level ATPG. In VTS ’00: Proceedings of the 18th IEEE VLSI Test Symposium (VTS’00).
IEEE Computer Society, Washington, DC, USA, 411–416.

Corno, F., Reorda, M. S., and Squillero, G. 2000b. RT-level ITC’99 benchmarks and first
ATPG results. IEEE Design & Test 17, 3, 44–53.

Darnauer, J. and Dai, W. W.-M. 1996. A method for generating random circuits and its
application to routability measurement. In FPGA ’96: Proceedings of the 1996 ACM fourth
international symposium on Field-programmable gate arrays. ACM Press, New York, NY, USA,
66–72.

Fernandes, J. M., Santos, M. B., Oliveira, A. L., and Teixeira, J. C. 2004. A probabilistic
method for the computation of testability of RTL constructs. In DATE ’04: Proceedings of the
Conference on Design Automation and Test in Europe. IEEE Computer Society, Washington,
DC, USA, 176–181.

Flottes, M. L., Pires, R., and Rouzeyre, B. 1997. Analyzing testability from behavioral to
RT level. In EDTC ’97: Proceedings of the 1997 European Conference on Design and Test.
IEEE Computer Society, Washington, DC, USA, 158–164.

ACM, Vol. 1, No. 1, 01 2008.

20 · T. Pecenka, L. Sekanina and Z. Kotasek

Garvie, M. and Thompson, A. 2003. Evolution of combinatonial and sequential on-line self-

diagnosing hardware. In 5th NASA / DoD Workshop on Evolvable Hardware (EH 2003).
IEEE Computer Society, Chicago, IL, USA, 177–183.

Gloster, C. 1993. ISCAS’89 Addendum benchmark set. In ACM/SIGDA Benchmarks Electronic
Newsletter. ACM.

Harlow, J. 2000. Overview of popular benchmark sets. IEEE Design & Test of Computers 17, 3,
15–17.

Hellebrand, S. and Wunderlich, H.-J. 1994. Synthesis of self-testable controllers. In Proceed-
ings of European Design and Test Conference. IEEE Computer Society Press, 580–585.

Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., and Furuya, T. 1993. Evolving
hardware with genetic learning: A first step towards building a Darwin Machine. In Proc. of
the 2nd International Conference on Simulated Adaptive Behaviour. MIT Press, 417–424.

Hutton, M. D., Rose, J., and Corneil, D. G. 2002. Automatic generation of synthetic sequential
benchmark circuits. IEEE Transactions on CAD of Integrated Circuits and Systems 21(8), 8
(8), 928–940.

Iwama, K., Hino, K., Kurokawa, H., and Sawada, S. 1997. Random benchmark circuits with
controlled attributes. In Proc. 1997 European Design and Test Conference. IEEE Computer
Society, Washington, DC, USA, 90–97.

Kundarewich, P. and Rose, J. 2004. Synthetic circuit generation using clustering and iteration.
IEEE Transactions on Computer-Aided Design 23, 6, 869–887.

Lohn, J. D., Larchev, G. V., and DeMara, R. F. 2003. A genetic representation for evolu-
tionary fault recovery in Virtex FPGAs. In Evolvable Systems: From Biology to Hardware, 5th
International Conference, ICES 2003. Springer, Trondheim, Norway, 47–56.

Marinissen, E. J., Iyengar, V., and Chakrabarty, K. 2002. A set of benchmarks for modular
testing of SOCs. In Proceedings IEEE International Test Conference (ITC). IEEE Computer
Society Press, Baltimore, MD, 519–528.

Mazumder, P. and Rudnick, E. 1998. Genetic algorithms for VLSI Design and Test Automation.
Prentice Hall PTR.

Miller, J., Job, D., and Vassilev, V. 2000. Principles in the evolutionary design of digital
circuits – part I. Genetic Programming and Evolvable Machines 1, 1, 8–35.

Miller, J. F. and Thomson, P. 1998. Aspects of digital evolution: Geometry and learning.
In Evolvable Systems: From Biology to Hardware, Second International Conference, ICES 98.
Lecture Notes in Computer Science 1478, 25–35.

Pecenka, T. 2006. Brno university of technology: Fittest bench06 benchmarks & cirgen page.
http://www.fit.vutbr.cz/∼pecenka/cirgen.

Pecenka, T., Kotasek, Z., and Sekanina, L. 2006. FITTest BENCH06: A new set of benchmark
circuits reflecting testability properties. In Proc. of 2006 IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop. IEEE Computer Society, 285–289.

Pecenka, T., Kotasek, Z., Sekanina, L., and Strnadel, J. 2005. Automatic discovery of rtl
benchmark circuits with predefined testability properties. In Proc. of the 2005 NASA/DoD
Conference on Evolvable Hardware. IEEE Computer Society, Los Alamitos, US, 51–58.

Pecenka, T., Strnadel, J., Kotasek, Z., and Sekanina, L. 2006. Testability estimation based
on controllability and observability parameters. In Proceedings of the 9th EUROMICRO Con-
ference on Digital System Design (DSD’06). IEEE Computer Society, 504–514.

Pistorius, J., Legai, E., and Minoux, M. 1999. Generation of very large circuits to benchmark
the partitioning of FPGA. In ISPD ’99: Proceedings of the 1999 International Symposium on

Physical Design. ACM Press, New York, NY, USA, 67–73.

Sekanina, L. 2004. Evolvable Components: From Theory to Hardware Implementations. Natural
Computing Series, Springer-Verlag.

Sekanina, L. and Ruzicka, R. 2003. Easily testable image operators: The class of circuits
where evolution beats engineers. In The 2003 NASA/DoD Conf. on Evolvable Hardware.
IEEE Computer Society, Chicago, 135–144.

Strnadel, J. 2004. Testability analysis and improvements of register-transfer level digital circuits.
Ph.D. thesis, Brno University of Technology.

ACM, Vol. 1, No. 1, 01 2008.

Evolution of Synthetic RTL Benchmark Circuits with Predefined Testability · 21

Stroobandt, D., Verplaetse, P., and Van Campenhout, J. 2000. Generating synthetic bench-

mark circuits for evaluating cad tools. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 19, 9 (9), 1011–1022.

Thompson, A. 1998. Hardware Evolution: Automatic Design of Electronic Circuits in Reconfig-
urable Hardware by Artificial Evolution. Distinguished dissertation series. Springer-Verlag.

URL-ITC99 1999. ITC’99 Benchmarks Web Site. http://www.cad.polito.it/tools/itc99.html.

Verplaetse, P., Stroobandt, D., and Van Campenhout, J. 2002. Synthetic benchmark circuits
for timing-driven physical design applications. In Proceedings of the International Conference
on VLSI, H. Arabnia, Ed. CSREA Press, Las Vegas, Nevada, USA, 31–37.

Zhang, K., DeMara, R. F., and Sharma, C. A. 2005. Consensus-based evaluation for fault
isolation and on-line evolutionary regeneration. In Evolvable Systems: From Biology to Hard-
ware, 6th International Conference, ICES 2005. Lecture Notes in Computer Science, vol. 3637.
Springer, 12–24.

Received May 2007; accepted XXXX

ACM, Vol. 1, No. 1, 01 2008.

