
Computing (2011) 93:103–120
DOI 10.1007/s00607-011-0157-9

Artificial evolution in computer aided design: from the
optimization of parameters to the creation of assembly
programs

Giovanni Squillero

Received: 26 September 2011 / Accepted: 27 September 2011 / Published online: 11 October 2011
© Springer-Verlag 2011

Abstract Evolutionary computation has been little, but steadily, used in the CAD
community during the past 20 years. Nowadays, due to their overwhelming complex-
ity, significant steps in the validation of microprocessors must be performed on silicon,
i.e., running experiments on physical devices after tape-out. The scenario created new
space for innovative heuristics. This paper shows a methodology based on an evolu-
tionary algorithm that can be used to devise assembly programs suitable for a range
of on-silicon activities. The paper describes how to take into account complex hard-
ware characteristics and architectural details. The experimental evaluation performed
on two high-end Intel microprocessors demonstrates the potentiality of this line of
research.

Keywords Evolutionary computation · Microprocessors · Post-silicon verification ·
Speed paths

Mathematics Subject Classification (2000) 00A06

1 Introduction

The 40 years since the appearance of the Intel 4004 deeply changed how micropro-
cessors are designed. Today, essential steps in the validation process are performed
relying on physical dices, analyzing the actual behavior under appropriate stimuli. For
example, the typical design flow goes through several iterations of frequency pushes
prior to final volume production, where the behavior of prototypical devices is checked
at increasing operating frequencies, and, as soon as a speed grade is reached with good
timing yield, the target is set for an even higher speed grade [1].

G. Squillero (B)
Politecnico di Torino, Turin, Italy
e-mail: giovanni.squillero@polito.it
URL: http://www.cad.polito.it/

123

104 G. Squillero

Indeed, most of the timing verification must be performed on silicon. In nanometer
processes it is not feasible to consider simultaneously all factors that contribute to
the timing behavior during the pre-silicon analysis, and even the analysis algorithms
themselves are often approximated or oversimplified [2,3].

This paper describes a methodology based on an evolutionary algorithm that can
be used to devise assembly programs suitable for timing verification or other on-sil-
icon activities such as timing verification. The approach exploits the feedback from
the microprocessor under examination and does not rely on information about its
microarchitecture, nor does it require design-for-debug features.

The first two sections of the paper quickly summarize evolutionary computation
and its practical use in the CAD community. Then, some issues about speed debug are
introduced, and the proposed approach detailed. An experimental evaluation concludes
the paper.

2 Theory of evolutionary computation

Evolution is the biological theory that animals and plants have their origin in other
types, and that the distinguishable differences are due to modifications in succes-
sive generations [4]. Natural evolution is not a random process. On the contrary, it is
based on random variations, but some are rejected while others preserved according
to objective evaluations. Only changes that are beneficial to the individuals are likely
to spread into subsequent generations. Darwin called this principle “natural selection”
[5], a quite simple process where random variations “afford materials”.

When natural selection causes variations to be accumulated in one specific direction
the result strikingly resembles an optimization process. This process only requires to
assess the effect of random changes, not the ability to design intelligent modifica-
tions. Several researchers, independently, tried to replicate such a characteristic to
solve difficult problems more efficiently.

Evolutionary computation (EC) is the offshoot of computer science focusing on
algorithms loosely inspired by the theory of evolution. The definition is deliberately
vague since the boundaries of the field are not, and cannot be, sharply defined. EC is a
branch of computational intelligence, and it is also included into the broad framework
of bio-inspired heuristics.

EC does not have a single recognizable origin. Some scholars identify its starting
point in 1950, when Alan Turing drew attention to the similarities between learning
and evolution [6]. Others pointed out the inspiring ideas that appeared later in the
decade, despite the fact that the lack of computational power impaired their diffusion
in the broader scientific community [7]. More commonly, the birth of EC is set in
the 1960s with the appearance of three independent research lines: John Holland’s
genetic algorithms (GA) [8]; Lawrence Fogel’s evolutionary programming (EP) [9];
Ingo Rechenberg’s and Hans-Paul Schwefel’s evolution strategies (ES) [10,11]. These
three paradigms monopolized the field until the 1990s, when John Koza entered the
arena with genetic programming (GP) [12]. These four, together with the many other
different EC paradigms that have been proposed over the years, can be grouped under
the term evolutionary algorithms (EAs).

123

Artificial evolution in computer aided design 105

In EAs1 a single candidate solution is termed individual; the set of all candidate solu-
tions that exists at a particular time is called population. Evolution proceeds through
discrete steps called generations. In each of them, the population is first expanded
and then collapsed, mimicking the processes of breeding and struggling for survival.
Some evolutionary algorithms do not store a collection of distinct individuals, and
evolution is depicted through the variation of the statistical parameters that describe
the population.

Most of the jargon of evolutionary computation mimics the precise terminology of
biology. The ability of an individual to solve the target problem is measured by the
fitness function, which influences the likelihood of a solution to propagate its charac-
teristics to the next generation. In some approaches individuals may die of old age,
while in other they remain in the population until replaced by fitter ones.

The word genome denotes the whole genetic material of the organism, although
its actual implementation strongly differs from one approach to another. The gene is
the functional unit of inheritance, or, operatively, the smallest fragment of the genome
that may be modified in the evolution process. Genes are positioned in the genome at
specific positions called loci. The alternative genes that may occur at a given locus are
called alleles.

Biologists need to distinguish between the genotype and the phenotype: the former
is all the genetic constitution of an organism; the latter is the set of observable prop-
erties that are produced by the interaction between the genotype and the environment.
In many implementations, EC practitioners do not require such a precise distinction.
The single numerical value representing the fitness of an individual is sometimes
assimilated to its phenotype.

To generate the offspring, EAs implement sexual and asexual reproduction. The
former is named recombination; it involves two or more participants, and implies the
possibility for the offspring to inherit different characteristics from different parents.
When recombination is achieved through an exchange of genetic material between
the parents, it often takes the name of crossover. Asexual reproduction may be named
replication, to indicate that a copy of an individual is created, or, more commonly,
mutation, to stress that the copy is not exact. All operators exploited during reproduc-
tion can be cumulatively called evolutionary operators, or genetic operators because
they act at the genotypical level. Almost no evolutionary algorithm takes gender into
account; hence, individuals do not have distinct reproductive roles.

3 Practical use of evolutionary computation

An EA performs better than a pure random approach. This rather simple consideration
is probably the main reason why EAs are sometimes exploited outside the EC commu-
nity. They provides an effective methodology for trying random modifications, where
no preconceived idea about the optimal solution is required. Being based on a popula-
tion, EAs are more robust than pure hill climbing. Both small and large modifications

1 This short introduction tries to emphasize the common aspects in EC, unifying different paradigms under
the same umbrella. A comprehensive survey that highlights the distinctive traits is [48].

123

106 G. Squillero

are possible, but with different probabilities. Sexual recombination allows merging
useful characteristics from different solutions, exploring efficiently the search space.
Furthermore, EAs are quite simple to set up, and require no human intervention when
running. They are inherently parallel, and a nearly-linear speed-up may be easily
achieved on multiple instruction/multiple data (MIMD) architectures. Finally, it’s easy
to trade-off between computational resources and quality of the results.

Unfortunately, several hidden and rather obscure details may significantly impair
EAs’ efficacy. This may explain the relative slow acceptance, compared to other bio-
inspired heuristics, such as simulate annealing (SA).

3.1 Common pitfalls and open issues

Several details may impair the efficacy and performance of an EA. First, failing to
define an appropriate fitness function may easily spoil the evolution process. The fit-
ness function must be able to discriminate between almost all individuals. That is,
different solutions must receive different fitness values, because small variations must
trigger differential survival in the artificial population.

Moreover, since the fitness is a synthetic measure, it is necessary to carefully con-
sider which information is removed. For instance, if an EA is used to implement an
automatic test-pattern generator (ATPG) the fitness cannot be simply defined as the
attained fault coverage (FC%), because two individuals detecting 10% of the faults
would be considered absolutely equivalent. However, if the first one is able to detect
some random-resistant, hard-to-test faults while the second is an uninteresting random
pattern, only the characteristics of the first one must be preserved in subsequent gen-
erations.

The choice of the representation for the individual is also important. Individuals
must encode some structural information about the desired solution. However, too
much information may bias the process preventing the discovery of optimal solutions.
On the contrary, too few information may increase the dimension of the search space
slowing down the evolution process. In some case, the encoding follows naturally
from the problem. For instance, a fixed number of real parameters when optimizing
filter coefficients, or a variable number of bit vectors when implementing a sequen-
tial ATPG. Conversely, different problems, like the design of circuits or the creation
of assembly-language programs, require less obvious encoding. The individual rep-
resentation also influences the behavior of genetic operators. Evolution calls for the
offspring to preserve most of the parents’ characteristics, however they are defined by
the current application.

Besides, the main problem with EA is definitely premature convergence. Genera-
tion after generation individuals in the population tend to be all alike, the population
converges to a single point in the search space, all recombination operators become
quite ineffective and the evolution process almost stops. In such a condition, an EA
behaves like an overloaded, inefficient random-mutation hillclimber.

Premature convergence is an endemic problem of EC. In nature, “natural selection,
also, leads to divergence of character; for more living beings can be supported on the
same area the more they diverge in structure, habits, and constitution” [5]. However,

123

Artificial evolution in computer aided design 107

in artificial evolution there is no explicit environment since its effects are modeled
through the fitness function.Consequently, the divergence of character, i.e., one of the
pillar of the Darwinian theory of evolution, is completely missing.

Several contributions describe methodologies to tackle this problem [13–15].
Authors proposed to preserve the diversity of the population by aging individuals,
limiting interactions or other quite complex mechanisms. However, none of these
artificial mechanisms can be called a panacea, and practitioners still need to tackle
premature convergence on a problem-specific basis.

3.2 Evolutionary algorithms in computer aided design

The first works exploiting EC techniques in the CAD field appeared in the early 1980s.
In the beginning, the term GA was often used to denote a generic EA, and artificial
evolution was mainly used to optimize numeric coefficients2 (e.g., [16,17]).

In the 1990s, EAs eventually gathered some recognition in the CAD community
[18]. Several methodologies were unable to scale with the technology and handling
the complexity of the circuits became a serious issue. Evolutionary heuristics were
seen as promising alternatives to classic approaches. Researchers proposed EA-based
methodologies for placement, floorplanning and routing (all NP-hard problems). Com-
pared to the early works, such applications required more complex encoding for the
individuals and the design of ad-hoc genetic operators (e.g., [19,20]). Optimization
and mapping for FPGA based on configurable logic block (CLBs), logic synthesis,
and decision-diagrams optimization (e.g., BDD, OBDD, KFDD) also offered a fertile
ground for EAs. Figure 1 shows the number of papers exploiting EAs that appeared
in some key CAD conferences from the 1990.

Holland’s GAs operated on strings of bits, and a test sequence for a sequential cir-
cuit is precisely a variable-length string of bits. As the complexity of the circuit started
preventing the use of the traditional methodologies for sequential ATPGs, such as the
D algorithm or path-oriented decision making (PODEM), some authors proposed to
exploit EC. In the 1990s, several EA-based ATPGs were proposed, such as GATTO
[21] and STRATEGATE [22]. Most of the research focused on exploiting the evo-
lutionary core in an effective way, while the standard GAs’ genetic operators were
used. Driven by the first successes, researchers quickly moved into close areas, such
as ATPG for fault diagnosis (e.g., [23]), ATPG for delay faults (e.g., [24]), ATPG
for RT-level circuits (e.g., [25]), and test-sequence compaction (e.g., [26]). Works on
EA-based ATPG steadily appeared in the scientific literature in the following 20 years.3

In the 2000s, the idea of high-level ATPG was further extended and EAs were proposed
to generate sequences of assembly instructions to test a microprocessors [27].

2 EAs do not approximate gradients, nor presume their existence, thus can be used where other methods,
like quasi-Newton, conjugate gradient or Broyden–Fletcher–Goldfarb–Shanno (BFGS), fail due to dis-
continuities, sharp bends, noise or local optima. EA-based numerical optimizers sharply improved in the
2000s. The most effective techniques available today are: covariance matrix adaptation evolution strategy
(CMA-ES), developed by Nikolaus Hansen [45]; differential evolution (DE) devised by Kenneth Price and
Rainer Storm [46]; particle swarm optimization (PSO), proposed by Russell Eberhart, James Kennedy and
Yuhui Shi [47].
3 A remarkable recent contribution is [49].

123

108 G. Squillero

Fig. 1 Number of papers exploiting EAs published in key CAD conferences: Design automation confer-
ence (DAC); International test conference (ITC); European design automation conference (EURO-DAC,
1990–1996); Design, automation and test in Europe (DATE, 1997–2010)

EAs were also used for simulation-based design validation [28]. The generation
of sequence of stimuli resemble the ATPG problem, however even more problems
arise from the design the fitness function. A bug is either caught or silent, with no
intermediate values, while evolution requires most of the individuals in the population
to have different fitness values. EAs have been proposed as stimuli generators for
semi-formal verification. In such contexts, fitness functions can be based on the cover-
age-metric figures obtained when simulating the individuals (e.g., [29]). Since 2000,
the possibility to evolve assembly programs was also exploited for microprocessor
design validation [30] and microprocessor post-silicon validation [31].

Since the very first works, EAs have been used as a design aid, to find the optimal
values for parameters and constants, or to solve placement and routing problems. In
addition, they were exploited to optimize analog cells for synthesis (e.g., [32,33]).
In later works, to design more complex elements, like non-standard built-in self-test
(BIST) structures (e.g., [34,35]). All these contributions are sometimes incorporated
into a broader framework named evolvable hardware (EH or EHW). The recent avail-
ability of programmable devices, like field-programmable gate array (FPGA), abetted
the experimentation in this area [36]. Despite a large amount of research and some
interesting successes [37], however, EHW still has difficulty in being accepted by the
CAD community.

4 Speed debug and on-silicon timing validation

Speed debug is the identification of paths that actually limit the performance of a
chip, i.e., the locations where design or technological fixes are required. It is a critical

123

Artificial evolution in computer aided design 109

activity, for instance, during the speed stepping of a microprocessor when a prototype
is tested at increasing clock frequencies until a misbehavior is detected.

A failing test is a pattern of operations that uncovers an incorrect behavior. The
availability of failing tests is essential for performing an effective speed debug. Unfor-
tunately, the development of failing tests can be very expensive and time consuming. A
software-based functional failing test is an assembly-language program whose result
is functionally incorrect. That is, the misbehavior may be detected simply checking
the values in the registers at the end of the execution.

Roughly speaking, speed paths can be highlighted in two complementary scenar-
ios: low core voltage and high clock frequency. In a technology based on field-effect
transistors (FETs), reducing the voltage increases the time required to switch between
logic values [13] However, increasing frequency and reducing voltage involves sig-
nificantly different phenomena, especially if paths have different voltage sensitivities
or are interconnect dominated.

The following describes an EA-based methodology for the automatic generation of
software-based functional failing tests suitable for speed debug or similar on-silicon
activities. Both extreme cases are considered: in a first set of experiments, the core
voltage is varied while the operating frequency is fixed. Conversely, in a second set
of experiments, the operating frequency is varied while the core voltage is fixed.

5 Proposed architectures

Candidate failing tests are created without a rigid scheme, and evaluated on the target
microprocessor. The data gathered are fed back to the generator and used to calculate
their fitness. Then, a new and enhanced set of candidate tests is then generated. The
whole process is iterated while some improvement is achieved. A feasibility study of
the methodology has been presented in a poster at VLSI-SoC 2011 [38].

Two computers can be used: the master computer runs the EA-based failing-test
generator; the slave executes them. (Fig. 2, left). Alternatively, only one computer
may act both as generator and evaluator. There are both practical advantages and
disadvantages in this second option (Fig. 2, right).

When two computers are used, the master needs to control the operating condi-
tions of the slave, modifying the core voltage or the operating frequency. A significant

Candidate test

slave

Frequency & voltage

Results

optimization
evaluation

master/slave

optimization

evaluation

master

Fig. 2 System architecture: master and slave (left), and single computer (right)

123

110 G. Squillero

overhead is added to the evaluation process. Furthermore, additional hardware may
be required, although modern motherboards include several features to this end.

When only one computer is used the overhead is reduced, but the process is more
intricate. The microprocessor must stop executing the evolutionary core and modify
its own operating parameters before executing the candidate test. To this end it is pos-
sible to exploit the dynamic performance scaling technologies. Intel branded them as
SpeedStep; Advanced Micro Devices as PowerNow! and Cool’n’Quiet; VIA Technol-
ogies as LongHaul. Since such technologies are intended to save power and reduce
heat, they only allow decreasing the operating frequency and the power supply voltage
supplied to the microprocessor. Thus, in the beginning of the experiments it may be
required to increase the operating frequency in a different way, such as modifying
motherboard settings.

In both scenario, it is required to handle serious crashes. When operating outside
standard parameters, the microprocessor can hang or freeze unexpectedly.

5.1 EA-based failing-test generator

The proposed methodology is based on an evolutionary core able to create suitable
candidate test programs. The automatic generation of programs for solving a generic
user-defined problem has always been one of the goal of EC since its very beginning.
GP is probably the branch of EC more close to this ambitious goal, indeed, the name
genetic programming reflects this aspiration. Nevertheless, most of the actual research
focused on the evolution of mathematical expressions, rather than full programs.

A versatile toolkit, named µGP, was developed at Politecnico di Torino in the early
2000s and it is now available under the GNU Public License from Sourceforge.4 µGP
does not aim at creating a program to solve generic problems, but rather to opti-
mize realistic assembly-language programs for very specific purposes. Its original use
was to assist microprocessors’ designers in the generation of programs for test and
verification. Hence, the Greek letter mu, pronounced “micro”, in its name.

µGP is designed to support all assembly peculiarities, like various conditional
branches, different addressing modes, and instruction asymmetries. Generated pro-
grams may take advantage of all syntactic structures, such as global and local vari-
ables, subroutines and interrupts. Since its creation, the tool underwent three main
revisions [39,40] and [41].

The latest version internally encodes individuals as directed multigraphs. During
the evolution, one or more instructions can be added; one or more instructions may
be removed; the operands of certain instructions can be modified. µGP also includes
crossover operators, thus new programs may be obtained by mixing, in different ways,
existing ones. The multigraph representation helps ensuring that the result of the
crossover is still a sensible program, resembling to both parents and, thus, inheriting
potentially good characteristics from both of them.

Finally, in µGP, the fitness is not a single value but a vector of positive coefficients.
The individual A is considered to be fitter than the individual B if the first j elements

4 http://ugp3.sf.net/.

123

http://ugp3.sf.net/

Artificial evolution in computer aided design 111

of the two fitness vectors are equals, and the (j + 1)th element of the A’s fitness is
greater than the (j + 1)th element of the B’s fitness.

5.2 Individuals

The internal representation is a key aspect of every EA. µGP requires a description
of the assembly language to be used. For the generation of failing test it is essential
to test all possible instructions, and especially the newest. The assembly instructions
made available to µGP can be divided in three main classes.

Integer instructions include all usual instructions, such as logical and arithmetical
ones. They operate on internal registers or memory. In the adopted scheme, only two
registers are employable, while the others are used by the manager. However, this
restriction should not impair the global result. Comparisons, tests and branches are
also included in this class. To avoid endless loops, µGP was forced to create only
forward branches in the generated code.

x87 instructions are the subset of the Intel 32-bit architecture (IA32) related to
the floating point unit (FPU). The name stems from the old separate floating point
coprocessors, like 80287 and 80387. They provide single precision, double precision
and 80-bit double-extended precision binary floating-point arithmetic according to
the IEEE 754-1985 standard. x87 instructions operates on a stack of eight 80-bit wide
registers, but some instruction modifiers allow the use of the stack as a set of registers.
In the actual version, µGP uses x87 instructions in only one thread.

The third class of instructions requires a slightly longer introduction. In 1996, Intel
introduced single-instruction/multiple-data (SIMD) instructions in the Pentium micro-
processor, its first superscalar implementation of the x86 instruction set architecture.
In a SIMD instruction, multiple processing elements perform the very same operation
simultaneously on different data. Matter-of-factly, the technique is called data-level
parallelism. Pentium’s SIMD instructions were originally branded as MMX extension,
then Intel changed their name to Streaming SIMD Extensions (SSE). Advanced Micro
Devices offered its own version as 3DNow!

Not surprisingly, SIMD instructions are particularly critical during speed stepping.
The complex calculations involved by these instructions cause data to go through sev-
eral functional units, and the resulting datapaths are prone to be source of problems
when the operating frequency is increased.

Cache memories must be taken into account as well, since there may be a signifi-
cant difference in performance and power consumption between a L1 cache hit and a
L1 cache miss. In order to give µGP the possibility to generate cache hits and cache
misses, a special set of C variables was defined. The variables are carefully spaced
so that all their memory locations will be cached in the very same cache location.
If the microprocessor uses a k-way set associative L1 cache and C > k, a shrewd
sequence of read and write operations on such variables may generate the desired
cache activity.

It must be noted that the goal of adding such variables is to let the evolutionary core
to control the cache activity, but no suggestions are given on how nor when to exploit
them. µGP would find autonomously which sequence of operations is more useful to
generate a failing test.

123

112 G. Squillero

Finally, since modern processors implement multithreaded designs, exploit mul-
ticore architectures, or both, the candidate test is required to contain multiple inde-
pendent instruction flows. Such independent instruction flows are encoded in a µGP
individual as disjoint subgraphs.

5.3 Fitness function

A functional failing test for speed debug is an assembly-language program that pro-
duces the correct result only while the operating frequency is below a certain threshold
and the core voltage is above a certain other threshold. Let denote both these values
as functional thresholds, because the incorrect behavior is functionally observable.

The most relevant aspect of a candidate test is its functional threshold. In the
first scenario lower frequency values are better: a test that produces a failure at
a relatively low frequency is preferable to a test that fails only at very high fre-
quencies. Conversely, in the second scenario, higher voltage values are better: all
tests would fail with a very low core voltage, but only the interesting ones require
full power. Thus, the first element in the fitness vector represent directly the func-
tional frequency threshold, or it is inversely proportional to the functional voltage
threshold.

µGP creates assembly functions that are assembled and linked with a manager
module. These functions contain a loop that execute L times a set of instructions. The
instructions themselves are devised by the evolutionary core, while the framework
is fixed. Similarly to software-based self test (SBST) [42], candidate test programs
include a mechanism for checking their correctness: all the results of the calculations
performed by the test program during the loops are compacted in a single signa-
ture using a hash function. The program is first executed in safe conditions and the
signature recorded. Then, operating conditions are varied checking that the signa-
ture is not modified. As soon a difference is detected, the functional threshold is
recorded.

Non-deterministic effects pose additional challenges: design criticalities may
appear only occasionally, thus, the test is repeated several times. The practical use-
fulness of a functional failing test increases with its predictability: a test failing half
of the times is more useful than a test that produces a single failure every thousand
runs. Thus, each test is repeated R times, and the second element of the fitness is the
number of failures recorded at the functional threshold.

6 Experimental evaluation

Devising a comparison for the proposed methodology is not an easy task: there are no
publicly-available test suites for assessing results on functional failing-test generation,
and very few results have been disclosed in the scientific literature. However, a closely
related problem is frequently faced by the overclockers, a community of computer
enthusiasts. Overclockers enjoy themselves pushing the performance of their micro-
processors by increasing the operating frequency far beyond the nominal specification

123

Artificial evolution in computer aided design 113

[43]. For instance, an Intel Celeron D 352 has been reported running with a clock
above 8.3 GHz,5 160% higher than the nominal 3.2 GHz.

Overclockers need to assess the stability of their systems. The whole community
is actively seeking stability tests able to quickly and reliably discriminate a working
system from one that have been pushed too far. Such test suites are used to stress the
systems and highlight criticalities, thus they may be regarded as generic functional
fail tests not focused on a specific microprocessor. They have been used as a baseline
to evaluate the performances of the proposed methodology.

While all the stability tests are quite different, a common point is that modern ones
do extensive SIMD calculation. Another common point is their ability to increase the
temperature of the microprocessor. It is well known that high temperature may cause
both reversible and irreversible effects on electronic devices. Heating may increase
the skew of the clock net and alter hold/setup constraints, causing design criticalities
to become manifest and the circuit to operate incorrectly [44].

However, while such an effect is sensible when assessing the stability of a system,
it may not be desirable when the goal is to find a failing test during speed stepping.
The main reason is that the failing test should be as repeatable as possible, while
increasing the temperature also increases non-deterministic phenomena. Neverthe-
less, since no other comparison is possible, the proposed approach was tested against
the state-of-the-art stress tests used by the overclocking community.

6.1 Overclockers’ stress tests

Most of the information about stability stress tests is available through forums and
web sites on the internet, with few or none official sources. However, there is quite a
generalized agreement in the overclockers community on these tools.

Prime95 is the name of an application written by George Woltman and used by
a project for finding Mersenne prime numbers.6 It makes extensive use of the fast
Fourier transform, or FFT, with a highly efficient implementation that exploits SIMD
instructions. Over the years, it has become extremely popular among overclockers as
a stability test. It includes a “Torture Test” mode designed specifically to test systems
and highlight problems. In the overclocking community, the rule of thumb is to run it
for some 10 h.

LINPACK is a software library for performing numerical linear algebra on digital
computers. It was originally written in Fortran in the 1970s and early 1980s. Newer
implementations of LINPACK exploit SIMD instructions and are highly optimized.
Significantly, Intel includes a benchmark based on an optimized version of LINPACK
in its Math Kernel Library.7 Different applications exploited such benchmark to assess

5 http://valid.canardpc.com/records.php.
6 A Mersenne number is a positive integer that is one less than a power of two: M = 2p − 1. As of
September 2011, the largest known prime number is a Mersenne number: N = 243,112,609 − 1.
7 http://software.intel.com/en-us/intel-mkl/.

123

http://valid.canardpc.com/records.php
http://software.intel.com/en-us/intel-mkl/

114 G. Squillero

the stability. The most common are LinX,8 IntelBurnTest,9 and OCCT.10 The last one
also includes a proprietary stress test.

6.2 Target microprocessors

Experiments were run on two different microprocessors, namely the Intel Pentium
Core 2 Duo E2180 and the Intel Pentium Core i7-950. These microprocessors were
mounted on standard motherboard and equipped with in-house manufactured water
cooling systems.

The E2180 is a dual-core microprocessor based on the Core architecture. It does not
exploit simultaneous multithreading. Each core has two separate 32 KiB L1 caches for
data and instructions, both implementing an 8-way set associative architecture. Each
core has also a L2 cache is 1 MiB, 4-way set associative that is used for both data and
instructions. While the default clock was 2 GHz, for the purpose of the experiments
the system was overclocked to 2.93 GHz.

The i7-950 is a quad-core microprocessor based on Nehalem architecture, the suc-
cessor of the Core architecture. It is able to run up to 8 threads with simultaneous
multithreading. Each core has two separate 32 KiB L1 caches for data and instruc-
tions, both implementing an 8-way set associative architecture. Each core has also an
L2 cache of 1 MiB, 8-way set associative that is used for both data and instructions.
There is an additional 8 MiB L3 cache, 16-way set associative that is shared by the 4
cores using a design branded as Intel smart cache. The default clock ranges between
3.06 and 3.48 GHz, thanks to the so-called Intel turbo boost technology 2.0 that auto-
matically allows processor cores to run faster than their base operating frequency.

6.3 Experimental results

The parameters used in the experiments are summarized in Table 1. All µGP ones are
standard. R and L impact on the length of the experiments. C must be equal or larger
compared to cache parallelism.

The failing test devised by the proposed approach on the target system was compared
with the state-of-the-art stress tools used by the overclocking community. Columns
are labeled with the name of the program used to test the system. The last column
reports data of the test generated by µGP. Rows indicate the CPU core voltage at
which the experiments were run. Cells shows the time required for the given stress
test to report a failure. To reduce overheating effects, all tests were stopped after 10
minutes. The infinity sign “∞” means that no failure has been detected in the allowed
time. All experiments have been repeated 10 times.

Tables 2 and 3 report the comparison against overclockers’ stress when the criti-
calities where caused by a reduction of the core voltage. The first table shows results

8 Originally posted on http://forums.overclockers.ru/.
9 http://www.ultimate-filez.com/.
10 http://www.ocbase.com/perestroika_en/.

123

http://forums.overclockers.ru/
http://www.ultimate-filez.com/
http://www.ocbase.com/perestroika_en/

Artificial evolution in computer aided design 115

Table 1 µGP parameters and
failing-test constants

Parameter Meaning Value

µ Size of the population 30

ν Size of the initial (random) population 100

λ Operators applied in each generation 20

R Repetitions of each test to tackle 10
variability

L Repetitions inside each test 5,000,000

C Variables to exploit cache hit/miss 16

Stopping condition Steady state

Table 2 Time required to detect
an incorrect behavior on the
E2180 (system clock set to
2.93 GHz)

CORE [V] Prime95 IBT LinX OCCT µGP

1.2625 1′′ 2′ 2′ 3′′ ≤1′′
1.2750 6′′ 2′ 2′ 4′′ 2′′
1.2875 4′ 4′ 2′ 7′ 2′′
1.3000 ∞ 7′ 7′ ∞ 10′′
1.3125 ∞ ∞ ∞ ∞ 8′
1.3250 ∞ ∞ ∞ ∞ ∞

Table 3 Time required to detect
an incorrect behavior on the
i7-950 (system clock set to
3.82 GHz)

CORE [V] Prime95 IBT LinX OCCT µGP

1.21250 6′ 1′ 2′ 4′ <1′′
1.21875 ∞ ∞ 4′ 5′ <1′′
1.22500 ∞ ∞ ∞ ∞ <1′′
1.23125 ∞ ∞ ∞ ∞ <1′′
1.23750 ∞ ∞ ∞ ∞ <1′′
1.24375 ∞ ∞ ∞ ∞ <1′′
1.25000 ∞ ∞ ∞ ∞ <1′′
1.25625 ∞ ∞ ∞ ∞ 1′′
1.26250 ∞ ∞ ∞ ∞ 1′′
1.26875 ∞ ∞ ∞ ∞ 3′′
1.27500 ∞ ∞ ∞ ∞ 3′′
1.28125 ∞ ∞ ∞ ∞ 3′′
1.28750 ∞ ∞ ∞ ∞ 5′′
1.29375 ∞ ∞ ∞ ∞ 30′′
1.30000 ∞ ∞ ∞ ∞ 2′
1.30625 ∞ ∞ ∞ ∞ 5′
1.31875 ∞ ∞ ∞ ∞ ∞
1.32500 ∞ ∞ ∞ ∞ ∞

123

116 G. Squillero

Table 4 Time required to detect
an incorrect behavior on the
i7-950 (V-core set to 1.24375 V)

CPU Freq. (GHz) Prime95 IBT LinX OCCT µGP

3.827 30′′ 2′ 3′ 5′ 29′′
3.803 9′ 10′ 4′ ∞ 29′′
3.783 ∞ ∞ 5′ ∞ 29′′
3.758 ∞ ∞ 6’ ∞ 29′′
3.737 ∞ ∞ ∞ ∞ 30′′
3.721 ∞ ∞ ∞ ∞ 30′′
3.691 ∞ ∞ ∞ ∞ 30′′
3.666 ∞ ∞ ∞ ∞ 30′′
3.645 ∞ ∞ ∞ ∞ 77′′
3.622 ∞ ∞ ∞ ∞ ∞

Table 5 Time required to detect
an incorrect behavior on the
i7-950 (V-core set to 1.2500 V)

CPU Freq. (GHz) Prime95 IBT LinX OCCT µGP

3.827 3′ 6′ 6′ 8′ 28′′
3.803 ∞ ∞ 6′ ∞ 28′′
3.783 ∞ ∞ ∞ ∞ 29′′
3.758 ∞ ∞ ∞ ∞ 29′′
3.737 ∞ ∞ ∞ ∞ 29′′
3.721 ∞ ∞ ∞ ∞ 30′′
3.691 ∞ ∞ ∞ ∞ 30′′
3.666 ∞ ∞ ∞ ∞ 30′′
3.645 ∞ ∞ ∞ ∞ ∞
3.622 ∞ ∞ ∞ ∞ ∞

gathered on the E2180. All programs use two threads, that is, one for each core. The
second table shows results gathered on the i7-950. All programs use eight threads,
that is, two for each core. The i7-950 system clock was fixed to 3.82 GHz (about 10%
faster than the nominal frequency).

µGP required about 5 h to generate the best failing test for the E2180, and 40 h
for the i7-950. The difference in time can be explained taking into account the greater
number available steps, and the length of the test itself. Experiments where run using
a single computer.

Tables 4 and 5 report the comparison against overclockers’ stress when the criti-
calities where caused by an increase of the operating frequency. Since it was not easy
to tamper with the frequency of the E2180, experiments were run twice on the i7-950
with two core voltage, namely 1.24375 and 1.2500 V. µGP required about 100 h to
generate each failing test. Experiments where run using a master-slave architecture,
and this added a significant overhead to the evaluations.

Failing tests devised with the proposed methodology clearly outperform all other
approaches, forcing the processor to fail in conditions significantly close to nominal

123

Artificial evolution in computer aided design 117

Table 6 Feedback from the overclockers community

CPU Frequency V-Core IBT LinX OCCT µGP

N A

i7-860 2.80 4.25 1.4 – FAIL – PASS

i7-860 2.80 4.30 1.4 – FAIL – FAIL

i7-920 2.66 4.02 1.27 – PASS – FAIL

i7-920 2.67 2.65 1.27 – – – PASS

i7-920 2.67 3.20 1.0 PASS – – FAIL

i7-920 2.67 3.20 1.044 PASS – – PASS

i7-920 2.67 3.20 1.0312 FAIL – – FAIL

i7-920 2.67 3.20 1.0375 FAIL – – FAIL

i7-920 2.67 4.20 1.35 – – – PASS

i7-920 2.67 4.33 1.385 – PASS – FAIL

i7-920 2.67 4.40 1.45 – – – PASS

i7-930 2.80 3.80 1.2 – – – PASS

i7-950 3.06 4.03 1.31 PASS – – PASS

i7-950 3.06 4.03 1.28 FAIL – – FAIL

i7-950 3.06 4.03 1.328 PASS – PASS FAIL

i7-950 3.06 4.20 1.34 PASS PASS – FAIL

i7-950 3.06 4.20 1.31 PASS PASS – FAIL

i7-965 3.20 3.46 1.21 – – – PASS

ones. Remarkably, µGP was asked to find a very fast failing test for a specific micro-
processor, and therefore it is highly improbable that the devised program would fail
on a different model.

Moreover, the test was required to be very short, to avoid heating effects. On the
contrary, stress tests intentionally exploit overheating and are designed to work with
different architectures. The temperature of the microprocessor during the experiments
never exceeded 50◦C, while it was significantly higher while running LINPACK-based
stress tests, even with the liquid cooling.

6.4 Feedback from the overclockers’ community

The generated tests for the i7-950 were made available to the overclockers commu-
nity as ultra-fast stability test.11 The feedback is summarized in Table 6. The column
CPU shows the CPU model used in the experiments. The two columns labeled with
Frequency report the nominal (N) frequency of the CPU and the one actually used by
the overclocker (A). The next column shows the actual core voltage. The following
columns report the results of the various stability test: IBT, LinX, OCCT and the one

11 http://www.cad.polito.it/research/Microprocessors_Test_and_Verification/Speedpath_and_Overclock
ing/.

123

http://www.cad.polito.it/research/Microprocessors_Test_and_Verification/Speedpath_and_Overclocking/
http://www.cad.polito.it/research/Microprocessors_Test_and_Verification/Speedpath_and_Overclocking/

118 G. Squillero

generated by µGP. All the programs were considered stability tests, thus “FAIL” is a
positive result, meaning that the test was able to uncover the instability. On the other
hand, “PASS” means that the test was unable to pinpoint any problem.

Some overclockers did not run comparison tests with IBT, LinX or OCCT. Nev-
ertheless, the fact that they try the µGP one implies that they were considering their
system fully reliable.

Although not systematic, the feedback fully confirmed our claims: results on i7-950
microprocessors show the superiority of the µGP test. Similar results are achieved on
all i7-9xx units. As expected, the failing test is not effective on units from the i7-
860 family. Thus, it sounds plausible that the test stresses specific microarchitectural
features present in the former families but not in the i7-8xx one.

7 Conclusions

The paper proposed an efficient post-silicon methodology for devising software-based
functional failing tests. Such failing test may be exploited during speed debug or other
on-silicon activities, like timing verification.

Experimental results clearly demonstrate that tests are able to highlight criticali-
ties very specific of the target microarchitecture. More interestingly, it is able to do it
without any information about the design. The methodology was successfully tested
on an both an Intel Pentium Core 2 Duo E2180 and an Intel Pentium Core i7-950, and
it could be very easily applied to different devices.

The proposed methodology could be easily exploited by microprocessor manufac-
turers during timing verification, speed debug or other post-silicon activities.

Acknowledgments I need to acknowledge my friends Ernesto Sanchez and Alberto Tonda for their help
and insightful comments.

References

1. Zeng J, Guo R, Cheng W-T, Mateja M, Wang J (2011) Scan-based speed-path debug for a micropro-
cessor. IEEE Des Test Comput PP(99). doi:10.1109/MDT.2011.73 (accepted)

2. Killpack K, Kashyap C, Chiprout E (2007) Silicon Speedpath Measurement and Feedback into EDA
flows. In: 44th design automation conference, pp 390–395

3. Callegari N, Wang L-C, Bastani P (2009) Speedpath analysis based on hypothesis pruning and ranking.
In: 46th ACM/IEEE design automation conference, pp 346–351

4. Encyclopædia Britannica. (2011) Encyclopædia Britannica Online. Online. http://www.britannica.
com/EBchecked/topic/197367/evolution

5. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured
races in the struggle for life. Murray, London

6. Turing AM (1950) Computing machinery and intelligence. Mind, no 9, pp 433–360
7. Fogel D (ed) (1998) Evolutionary Computation: the fossil record. IEEE Press, New York
8. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applica-

tions to biology, control and artificial intelligence. The University of Michigan Press, Ann Arbor
9. Fogel LJ (1962) Autonomous automata. Ind Res 4:14–19

10. Rechenberg I (1971) Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien der bio-
logischen Evolution. Ph.D. thesis

11. Schwefel H-P (1974) Numerische Optimierung von Computer-Modellen. Ph.D. thesis

123

http://dx.doi.org/10.1109/MDT.2011.73
http://www.britannica.com/EBchecked/topic/197367/evolution
http://www.britannica.com/EBchecked/topic/197367/evolution

Artificial evolution in computer aided design 119

12. Koza John (1992) Genetic programming: on the programming of computers by means of natural
selection. The MIT Press, Cambridge

13. Burke EK, Gustafson S, Kendall G (2004) Diversity in genetic programming: an analysis of measures
and correlation with fitness. IEEE Trans Evol Comput 8(1):47–62

14. De Jong K, SarmaJ (1996) An analysis of the effects of neighborhood size and shape on local selection
algorithms. In: International conference on parallel problem solving from nature. Springer, Berlin,
pp 236–244

15. Squillero G, Tonda A (2008) A novel methodology for diversity preservation in evolutionary algo-
rithms. In: GECCO conference

16. Etter D, Masukawa M (1981) A comparison of algorithms for adaptive estimation of the time delay
between sampled signals. In: IEEE international conference on acoustics, speech, and signal processing,
pp 1253–1256

17. Etter D, Hicks M, Cho K (1982) Recursive adaptive filter design using an adaptive genetic algorithm.
In: IEEE acoustics, speech, and signal processing, pp 635–638

18. Drechsler Rolf (1998) Evolutionary algorithms for VLSI CAD. Springer, Berlin
19. Cohoon JP, Hegde SU, Martin WN, Richards D (1988) Floorplan design using distributed genetic

algorithms. In: IEEE international conference on computer-aided design, pp 452–455
20. Cohoon JP, Paris WD (1987) Genetic placement. IEEE Trans Comput Aided Des Integr Circuits Syst

6(6):956–964
21. Corno F, Prinetto P, Rebaudengo M, Sonza Reorda M (1996) GATTO: a genetic algorithm for auto-

matic test pattern generation for large synchronous sequential circuits. IEEE Trans Comput Aided Des
Integr Circuits Syst 15(8):991–1000

22. Hsiao MS, Rudnick EM, Patel JH (2000) Dynamic state traversal for sequential circuit test generation.
ACM Trans Des Autom Electron Syst 5(3):548–565

23. Girard P, Landrault C, Pravossoudovitch S, Rodriguez B (1996) A diagnostic ATPG for delay faults
based on genetic algorithms. In: International test conference, pp 286–293

24. Heragu K, Patel JH, Agrawal VD (1999) A test generator for segment delay faults. In: International
conference on VLSI design, pp 484–491

25. Corno F, Prinetto P, Sonza Reorda M (1997) Testability analysis and ATPG on behavioral RT-level
VHDL. In: International test conference, pp 753–759

26. Rudnick EM, Patel JH (1996) Simulation-based techniques for dynamic test sequence compaction. In:
International conference on computer-aided design, pp 67–73

27. Corno F, Sonza Reorda M, Squillero G, Violante M (2001) On the test of microprocessor IP cores. In:
Design, automation, and test in Europe, pp 02–09

28. Sonza Reorda M, Squillero G, Corno F (1999) Approximate equivalence verification of sequential
circuits via genetic algorithms. In: Automation and test in Europe, pp 754–755

29. Corno F, Sonza Reorda M, Squillero G, Manzone A, Pincetti A (2000) Automatic test bench genera-
tion for validation of RT-level descriptions: an industrial experience. In: Design, automation and test
in Europe, pp 385–389

30. Sanchez E, Squillero G (2007) Evolutionary techniques applied to hardware optimization problems:
test and verification of advanced processors. In: Palade V, Srinivasan D, Jain LC (eds) Studies on
computational intelligence, vol 66. Advances in Evolutionary computing for system design. Springer,
Berlin, pp 83–106

31. Sanchez E, Sonza Reorda M, Squillero G, Lindsay W (2004) Automatic test programs generation
driven by internal performance counters. In: Microprocessor test and verification, pp 8–13

32. Kruiskamp W, Leenaerts D (1995) DARWIN: CMOS opamp synthesis by means of a genetic algorithm.
In: Design automation conference

33. Iskander R et al (2003) Synthesis of CMOS analog cells using AMIGO. In: Design, automation and
test in Europe, pp 297–302

34. Cataldo S, Chiusano S, Prinetto P, Wunderlich H-J (2000) Optimal hardware pattern generation for
functional BIST. In: Design, automation and test in Europe, pp 292–297

35. Polian I, Becker B, Reddy SM (2003) Evolutionary optimization of Markov sources for pseudo random
scan BIST. In: Design, automation and test in Europe, pp 1184–1185

36. Sekanina L (2004) Evolvable components: from theory to hardware implementations. Springer, Berlin
37. Higuchi T, Yao X (eds) (2006) Evolvable hardware. Springer, Berlin
38. Sanchez E, Squillero G, Tonda A (2011) Post-silicon failing-test generation through evolutionary

computation. In: 19th IFIP/IEEE international conference on very large scale integration, Hong Kong

123

120 G. Squillero

39. Corno F, Cumani G, Sonza Reorda M, Squillero G (2002) Efficient machine-code test-program induc-
tion. In: Proceedings of the 2002 congress on evolutionary computation, pp 1486–1491

40. Squillero G (2005) MicroGP—an evolutionary assembly program generator. Genetic Program Evol
Mach VI(3):247–263

41. Sanchez E, Schillaci M, Squillero G (2010) Evolutionary optimization: the µGP toolkit. Springer,
Berlin

42. Chen Li, Dey S (2001) Software-based self-testing methodology for processor cores. IEEE Trans
Comput Aided Des Integr Circuits Syst, pp 369–380

43. Colwell B (2004) The zen of overclocking. Computer 37(3):9–12
44. Chakraborty A et al (2008) Dynamic thermal clock skew compensation using tunable delay buffers.

IEEE Trans Very Large Scale Integr (VLSI) Syst 16(6):639–649
45. Hansen N (2006) The CMA evolution strategy: a comparing review. In: Larrañga P, Inza I, Bengoetxea

E, Lozano JA (eds) Towards a new evolutionary computation. Advances in estimation of distribution
algorithms. Springer, Berlin pp 75–102

46. Price Kenneth, Storn Rainer, Lampinen Jouni (2005) Differential evolution: a practical approach to
global optimization. Springer, Berlin

47. Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif
Evol Appl 1–10

48. Fogel D (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE
Press, Piscataway

49. Li Min, Hsiao MS (2009) An ant colony optimization technique for abstraction-guided state justifica-
tion. In: International test conference, pp 1–10

123

	Artificial evolution in computer aided design: from the optimization of parameters to the creation of assembly programs
	Abstract
	1 Introduction
	2 Theory of evolutionary computation
	3 Practical use of evolutionary computation
	3.1 Common pitfalls and open issues
	3.2 Evolutionary algorithms in computer aided design

	4 Speed debug and on-silicon timing validation
	5 Proposed architectures
	5.1 EA-based failing-test generator
	5.2 Individuals
	5.3 Fitness function

	6 Experimental evaluation
	6.1 Overclockers' stress tests
	6.2 Target microprocessors
	6.3 Experimental results
	6.4 Feedback from the overclockers' community

	7 Conclusions
	Acknowledgments
	References

