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Abstract We propose to utilize a formal verification algorithm to reduce the fitness
evaluation time for evolutionary post-synthesis optimization in evolvable hardware.
The proposed method assumes that a fully functional digitalcircuit is available. A
post-synthesis optimization is then conducted using Cartesian Genetic Programming
(CGP) which utilizes a satisfiability problem solver to decide whether a candidate
solution is functionally correct or not. It is demonstratedthat the method can optimize
digital circuits of tens of inputs and thousands of gates. Furthermore, the number of
gates was reduced for the LGSynth93 benchmark circuits by 37.8% on average with
respect to results of the conventional SIS tool.

Keywords Cartesian genetic programming· circuit optimization· SAT solver·
evolvable hardware

1 Introduction

In the evolvable hardware field, evolutionary algorithms (and other bio-inspired algo-
rithms) are applied either for automated hardware design ordynamic hardware adap-
tation or repair [53,20,16,54,39,30]. According to Gordonand Bentley, the field of
evolvable hardware originates from the intersection of computer science, electronic
engineering and biology and typically includes aspects of hardware design and op-
timization techniques, particularly logic synthesis, technology mapping, placing and
routing [14].

In this article we will only deal with evolvable hardware as amethod for auto-
mated design, i.e. with a scenario in which the evolutionaryalgorithm is used only
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in design and optimization phase of a product. In this context, evolvable hardware
potentially offers promising solutions to logic synthesisand optimization where new
problems have recently been identified. It was shown that commonly used logic syn-
thesis algorithms are not capable of efficient synthesis andoptimization for some
circuit classes, especially for large circuits and circuits containing hard-to-synthesize
substructures [5,10]. In some cases the size of synthesizedcircuits is of orders of
magnitude greater than the optimum.

Thescalability problem has been identified as one of the most difficult problems
the researchers are faced with in the evolvable hardware field. The scalability problem
means such situation in which the evolutionary algorithm isable to provide a solution
to a small problem instance; however, only unsatisfactory solutions can be generated
for larger problem instances. Although various methods have been proposed to elim-
inate the scalability problem (see Section 2), only a partial success has been achieved
in some domains.

We will consider a subarea of the scalability problem – thescalability of evalua-
tion, in the context of optimization problems. We will show that it can reasonably be
eliminated in a task ofgate-level post-synthesis optimization of complex combina-
tional circuits consisting of thousands of gates and havingtens of inputs and outputs.
The method assumes that a fully functional circuit is available in a standard netlist
format which can be obtained using a conventional synthesisalgorithm. The main
goal is to reduce the number of gates.

We propose to use modern formal verification methods that have been overlooked
by the evolvable hardware community so far. The proposed method utilizes equiv-
alence checking algorithms (those used by conventional synthesis algorithms) that
allow a significant acceleration of the fitness evaluation procedure. Particularly, the
method is based on a post-synthesis optimization of combinational circuit conducted
using Cartesian genetic programming (CGP) [34] which evaluates candidate solu-
tions using the satisfiability (SAT) solver [9]. The technique relies on functional cor-
rectness of an initial solution (a seed for CGP). Note that not all applications of evolv-
able hardware fall into this category because such a seed is not generally available.
We have also introduced some techniques that explore the CGPrepresentation and
operators to reduce the number of clauses for the SAT solver and thus further shorten
the evaluation time.

Optimized circuits are compared with the most compact circuits that we obtained
from iterative application of decomposition and re-synthesis process which is con-
ducted by conventional synthesis tools such as ABC and SIS.

The plan for this article is as follows. Section 2 introducesthe concept of evolv-
able hardware and surveys the scalability problems. In Section 3, the proposed method
is explained. The key contribution of this article, the construction of the fitness func-
tion on the basis of formal verification techniques is introduced in Section 4. The
experimental evaluation of the proposed method representsthe content of Section 5.
Some practical aspects of the method are discussed in Section 6. Section 7 gives our
conclusions from the experimental evaluation and also somesuggestions for further
work.
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2 Evolvable Hardware and Its Scalability

2.1 Motivation for Circuit Evolution

Figure 1 explains the concept of evolvable hardware: Electronic circuits that are en-
coded as finite strings of symbols are constructed and optimized by the evolutionary
algorithm to obtain a circuit implementation satisfying a specification given by de-
signer. Since the introduction of evolvable hardware at thebeginning of nineties [21,
11], the main motivation for circuit evolution can be seen inthe fact that evolutionary
approach can lead to fully functional designs without beinginstructed how to con-
struct them. Hence one of the goals is to evolve as complex circuit as possible with a
minimum computational effort and domain knowledge supplied [51,43,41]. A typi-
cal application could be a reactive robot controller which is evolved in a sufficiently
large reconfigurable device where there is no need to optimize the number of gates
and delay [27].

Fig. 1 The principle of evolvable hardware

In many applications a perfect circuit response must by obtained for all requested
assignments to the inputs. The fitness function is usually constructed in such a way
that all requested assignments are applied to the inputs of acandidate circuit and
the fitness value is defined as the number of bits that the candidate circuit computes
correctly. When target functionality is obtained additional criteria can be optimized.
Evolution of arithmetic circuits is a typical example of that class [49,32]. To give ex-
amples where partially imperfect solutions are acceptablewe can mention evolution
of image filters, classifiers or predictors [19,38,12]. In addition to functionality, an-
other goal can be to obtain a solution which exhibits a betterquality in some aspects
with respect to existing designs of the same category. For example, a solution would
occupy a smaller area on a chip, compute faster, provide a better precision, reduce
the energy consumption, increase the reliability etc.
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2.2 Scalability of Fitness Evaluation

In case of combinational circuit evolution, the evaluationtime of a candidate circuit
grows exponentially with the increasing number of inputs (assuming that all possible
input combinations are tested in the fitness function). Thisfitness calculation method
is currently applicable for circuits with up to 10-20 inputs(depending on a particular
target function) [43,51,37,49,41]. In order to reduce the time of evaluation, various
techniques can be adopted:

– Only a subset of all possible input vectors is utilized. Thatis typical for synthe-
sis of filters, classifiers or robot controllers. Unfortunately, the approach is not
applicable for synthesis of arithmetic circuits as it does not ensure that correct re-
sponses will be obtained for those input combinations whichwere not used during
evolution [23].

– In some cases it is sufficient to evaluate only some structural properties (not the
functionality!) of candidate circuits which can be done with a reasonable time
overhead. For example, because testability of a candidate circuit can be calculated
in the quadratic time complexity, very large benchmark circuits with predefined
testability properties (more than 1 million gates) were evolved [36].

– In case that a target system is linear, it is possible to perfectly evaluate a candi-
date circuit using a single input vector independently of the circuit complexity.
Multiple-constant multipliers composed of adders, subtractors and shifters were
evolved for a 16-bit input and tens of 16-bit outputs [48].

An obvious conclusion is that the evaluation time becomes the main bottleneck
of the evolutionary approach when complex digital circuitswith many inputs are
evolved or optimized.

2.3 Scalability of Representation

From the viewpoint of thescalability of representation, the problem is that long
chromosomes which are usually required to represent complex solutions imply large
search spaces that are typically difficult to search. In order to evolve large designs
and simultaneously keep the size of chromosome small, various techniques have been
proposed, including functional-level evolution [35,39],incremental evolution [44,45,
43], modularization [51,26] and their combinations [41,12]. Despite the fact that a
new field of computational development has attracted a lot ofattention in this area
and brought some theoretical as well as practical results [18,29,22,42,15,17,47,31,
55] the problem of scalability is still an open issue.

3 Proposed Method

The goal of proposed method is to minimize the number of gatesin a functionally
correct combinational circuit that is typically obtained using a conventional synthesis
tool. The method consists of three main steps that will be described in detail in the
following sections:
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1. Perform the synthesis/optimization using a conventional synthesis algorithm.
2. Convert resulting circuit to the CGP representation and use it to seed the initial

population of CGP.
3. Run CGP that uses a formal verification method that will be described in Sec-

tion 4 to reduce the number of gates. CGP is terminated if either the maximum
allowed number of generations has been exhausted or a solution that fulfills the
requirements has been discovered.

3.1 Conventional Circuit Synthesis

Combinational logic functions are commonly specified by PLAfiles where PLA
stands for programmable logic array. The PLA file is an abbreviated truth table where
all inputs are specified. However, it does not list products for which all the outputs are
zero or undefined combinations. A circuit can also be represented as a netlist of gates
in BLIF (Berkeley Logic Interchange Format) format. BLIF lists all interconnected
combinational gates (and latches in case of sequential circuits).

Since proposed method is intended for a gate-level optimization, other steps of the
circuit design process such as mapping, routing, placementand subsequent technology-
specific optimizations are not considered in this paper. From conventional and rou-
tinely used synthesis methods we have chosen the SIS [40] tool (version sis1.2)
which provided in most cases better results than other toolssuch as ABC [3] (ver-
sion abc70930) or Espresso [4].

Implementations of synthesis tools support various operations with circuits, for
example, it is possible to convert PLA to BLIF and vice versa.Circuits specified
in BLIF can also be mapped on a chosen set of gates or look-up tables. The ABC
and SIS tools are deterministic. They attempt to apply various circuit decomposition
and re-synthesis techniques to transform a circuit under optimization and generate
optimized netlist. We have used them with recommended (standard) setting which is
represented by synthesis scripts given in Table 1. In order to improve their results we
applied them on their own results iteratively as suggested in [3]. That technique will
be discussed in Section 5.5.

3.2 Cartesian Genetic Programming

Cartesian Genetic Programming is a widely-used method for evolution of digital cir-
cuits [34,32]. CGP was originally defined for gate-level evolution; however, it can
easily be extended for functional level evolution [38]. In its basic version, candidate
circuits are directly represented in the chromosome. The following paragraphs de-
scribe how we have used CGP in the proposed method.

3.2.1 Representation

A candidate entity (circuit) is modeled as an array ofnc (columns)× nr (rows) of
programmable nodes (gates). The number of inputs,ni, and outputs,no, is fixed. Each
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Table 1 Synthesis scripts for the SIS and ABC method

SIS ABC

read PLA file read PLA file
script rugged script choice
map map
script rugged: script choice:
sweep; eliminate -1 fraig store;
simplify -m nocomp resyn; fraigstore;
eliminate -1 resyn2; fraigstore;
sweep; eliminate 5 resyn2rs; fraigstore;
simplify -m nocomp share; fraigstore;
resub -a fraig restore
fx
resub -a; sweep
eliminate -1; sweep
full simplify -m nocomp

node input can be connected either to the output of a node placed in the previousl
columns or to one of the circuit inputs. Thel-back parameter, in fact, defines the
level of connectivity and thus reduces/extends the search space. For example, ifl=1
only neighboring columns may be connected; ifnr = 1 andnc = l, full connectivity
is enabled. Feedback is not allowed. Each node is programmedto perform one of
na-input functions defined in the setΓ (n f denotes|Γ |). As Figure 2 shows, while the
size of chromosome is fixed, the size of phenotype is variable(i.e. some nodes are
not used). Every individual is encoded usingnc ×nr × (na +1)+ no integers.

Fig. 2 Example of a candidate circuit. CGP parameters are as follows: l = 3, nc = 4, ni = 3, no = 2, nr = 2,
Γ = {AND (0), OR (1)}. Nodes 5,7 and 9 are not utilized. Chromosome: 1,2,1, 2,0,0, 1,3,1, 3,4,0 1,6,0,
1,6,1, 1,7,0, 2,8,1, 6, 10. The last two integers indicate the outputs of circuit. The function of a gate is
typed in bold.

3.2.2 Search Algorithm

CGP operates with the population of 1+ λ individuals (typically,λ = 4). The initial
solution (the seed) is constructed by means of mapping of thecircuit obtained from
conventional synthesis and specified in the BLIF format to the CGP representation.
The mapping is straightforward since the CGP representation is in fact a netlist. If
the initial circuit consists ofm gates, each of them possessing up toγ inputs, then



7

CGP will operate with parametersnc = m,nr = 1, l = nc,na = γ. The circuit is also
transformed into the conjunctive normal form in order to create a reference solution
for the formal verification (see the method in Section 4 and Figure 5).

The seed together withλ offspring created using a point mutation operator form
the initial population which has to be evaluated. Every new population consists of the
best individual of the previous population and itsλ offspring. In case when two or
more individuals have received the same highest fitness score in the previous genera-
tion, one of individuals which have not served as a parent in the previous population
will be selected as a new parent. This strategy is important because it contributes to
ensuring the diversity of population [33].

3.2.3 Fitness function

When the objective is to minimize the number of gates the fitness value of a candidate
circuit may be defined in CGP as [24]:

f itness = B +(ncnr − z) (1)

whereB is the number of correct output bits obtained as response forall possible
assignments to the inputs,z denotes the number of gates utilized in a particular can-
didate circuit andnc.nr is the total number of gates available. The last termncnr − z
is considered only if the circuit behavior is perfect, i.e.B = no2ni .

The fitness calculation carried out by the proposed method differs from equation
1. Instead of evaluating all possible assignments to the inputs, a candidate circuit
is verified against a reference circuit as described in Section 4. The result of the
verification algorithm is a Boolean value. If the value is negative then the fitness
score is the worst-possible value. If the value is positive,the fitness value is just the
number of utilized gates (assuming that the goal is to minimize here) which can easily
be obtained from the CGP representation of a candidate solution.

3.2.4 Acceleration Techniques for Standard CGP

We will also utilize fitness calculation according to equation 1) in order to compare
the results with the formal verification-based fitness calculation. However, two mod-
ifications are incorporated to the implementation of equation 1 to reduce the compu-
tational overhead:

(i) Because the initial population already contains a fullyfunctional solution and
the elitism is implicit for CGP, there will be at least one perfectly working solution in
each population. Hence we can now consider CGP as a circuit optimizer rather than
a tool for discovering new circuit implementations from a randomly generated initial
population. The fitness evaluation procedure which probes every assignment to the
inputs (i.e., 0. . .2ni − 1 test cases) is time consuming. In order to make the evalua-
tion of a candidate circuit as short as possible, it is only tested whether a candidate
circuit is working correctly or incorrectly. In case that a candidate circuit does not
produce a correct output value for thej-th input vector,j ∈ {0. . .2ni −1}, during the
evaluation, the remaining 2ni − j − 1 vectors are not evaluated and the circuit gets
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the worst possible score (0). Experimental results show that this technique reduces
the computational overhead (see Table 3), but it does not significantly contribute to
solving the scalability problems. Note that this techniquecannot be applied for the
randomly initialized CGP because we have to know the fitness score as precisely as
possible (i.e. the exact number of bits has to be calculated that can be generated by a
particular candidate circuit) in order to obtain a reasonably smooth fitness landscape.

Fig. 3 Parallel simulation of a combinational circuit. The valuesy0 andy1 are the results of simulation;r0
andr1 are the required outputs

(ii) Parallel simulation is another technique that can be used to accelerate circuit
evaluation [32,37]. The idea of parallel simulation is to utilize bitwise operators op-
erating on multiple bits in a high-level language (such as C)to perform more than one
evaluation of a gate in a single step. For example, when a combinational circuit under
simulation has three inputs and it is possible to concurrently perform bitwise oper-
ations over 23 = 8 bits in a simulator then the circuit can completely be simulated
by applying a single 8-bit test vector at each input (see the encoding in Figure 3).
In contrast, when it is impossible then eight three-bit testvectors must be applied
sequentially. Current processors allow us to operate with 64 bit operands, i.e. it is
possible to evaluate a truth table of a six-input circuit by applying a single 64-bit test
vector at each input. Therefore, the obtained speedup is 64 against the sequential sim-
ulation. In case that the circuit has more than 6 inputs then the speedup is constant,
i.e. 64.

4 Formal Verification Approach in the Fitness Function

We propose to replace the fitness calculation approach basedon testing of all possible
assignments to the inputs by a functional equivalence checking algorithm. In order
to specify the problem, a set of Boolean functionsF = { f1, f2, . . . , fn} can be used.
Let each functionfi represent Boolean function of thei-th output of a candidate
circuit. Then the setF can be used to check whether a candidate solution meets the
specification or not.
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4.1 Functional Equivalence Checking

Determining whether two Boolean functions are functionally equivalent represents
a fundamental problem in formal verification. Although the functional equivalence
checking is an NP-complete problem, several approaches have been proposed so far
to reduce the computational requirement for practical circuit instances.

Most of proposed techniques are based on representing a circuit by means of its
canonical representation. Generally, two Boolean functions are equivalent if and only
if canonical representations of their output functions areequivalent. The Reduced
Ordered Binary Decision Diagrams (ROBDD) represent a widely used canonical
representation in formal verification [52]. ROBDD is a directed acyclic graph that
can be obtained by applying certain transformations on the ordered binary decision
diagram. Determining whether two circuits represent the same Boolean function is
equivalent to determining whether two ROBDDS are isomorphic. Some of methods
developed to determine whether two ROBDDS are isomorphic are based on graph-
based algorithms. Other methods are based on the combination of ROBDDs with the
XOR operation (see Fig. 4) and checking whether the resulting ROBDD is a constant
node (zero). And-or-invert graphs represent another canonic representation with sim-
ilar properties. All these graph-based approaches rely on the fact, that the number of
nodes in the resulting graph will be relative small, otherwise, the time of the ROBDD
construction as well as the time of comparison will be enormous. In practice, these
methods are rarely implemented directly without any further circuit preprocessing.
The main problems are the need for high memory resources due to a huge number of
BDD nodes and significant time requirements. Although many functions in practice
can be represented by polynomial number of BDD nodes with respect to the number
of inputs, there are functions (e.g. multipliers) that always have the number of nodes
exponentially related to the number of inputs [7]. The verification of such functions
still represents a challenge.

High consumption of memory resources has motivated researchers to look for al-
ternative methods. Since the satisfiability (SAT) solvers were significantly improved
during the last few years, the SAT-based equivalence checking becomes to be a
promising alternative to the BDD-based checking. In this case, circuits to be checked
are transformed into one Boolean formula which is satisfiable if and only if the cir-
cuits are functionally equivalent [13]. In this article we will use the SAT-based equiv-
alence checking because: (i) combinational circuits represented by CGP can be con-
verted to Boolean formula in linear time with respect to the number of CGP nodes,
(ii) several optimization techniques specific for the evolutionary design can be applied
and (iii) the SAT-based checking becomes to be a preferred method as it outperforms
the BDD-based approaches.

SAT solvers assume that the equivalence checking problem isexpressed using
Boolean formula in conjunctive normal form (CNF). CNF formula ϕ consists of a
conjunction of clauses denoted asω . Each clause contains a disjunction of literals.
A literal is either variablexi or its complement¬xi. Each clause can contain up ton
literals providing there exists exactlyn variables.

For our purposes, the most suitable transformation of the circuit to CNF is repre-
sented by Tseitin’s algorithm proposed in [46] that works asfollows: Let us consider
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a combinational circuitCA with k inputs that is composed ofn interconnected logic
gates. Without loss of generality, let us restrict the set ofall possible gates to the fol-
lowing one-input and two-input gates: NOT, AND, OR, XOR, NAND, and NOR only.
Let yi = Ω(xi1,xi2) denote a gatei of CA with functionΩ , outputyi and two inputs
xi1 andxi2 (1≤ i1, i2≤ k+n). The Tseitin transformation is based on the fact that the
CNF representationϕ captures the valid assignments between the primary inputs and
outputs of a given circuit. This can be expressed using a set of valid assignments for
every gate. In particular,ϕ = ω1∧ω2∧·· ·∧ωn whereωi(yi,xi1,xi2) = 1 if and only
if the corresponding predicateyi = Ω(xi1,xi2) holds true. During the transformation a
new auxiliary variable is introduced for every signal ofCA. Hence CNF contains ex-
actlyk+n variables and the size of the resulting CNF is linear with respect to the size
of CA. Table 2 contains the CNF representation for the gates utilized in this article.

Table 2 CNF representation of some common gates

Gate Corresponding CNF representation

y = NOT(x1) (¬y∨¬x1)∧ (y∨x1)
y = AND(x1,x2) (y∨¬x1 ∨¬x2)∧ (¬y∨x1)∧ (¬y∨x2)
y = OR(x1,x2) (¬y∨x1 ∨x2)∧ (y∨¬x1)∧ (y∨¬x2)
y = XOR(x1,x2) (¬y∨¬x1 ∨¬x2)∧ (¬y∨x1 ∨x2)∧

(y∨¬x1 ∨x2)∧ (y∨x1 ∨¬x2)
y = NAND(x1,x2) (¬y∨¬x1 ∨¬x2)∧ (y∨x1)∧ (y∨x2)
y = NOR(x1,x2) (y∨x1∨x2)∧ (¬y∨¬x1)∧ (¬y∨¬x2)

In order to check whether two circuits are functionally equivalent, the following
scheme is usually used. LetCA andCB be combinational circuits, both withk inputs
denoted asx1 . . .xk andm outputs denoted asy1 . . .ym andy′1 . . .y′m respectively. For
SAT based equivalence checking of two circuits, corresponding primary outputsyi

andy′i are connected using the XOR-gate. This gate is denoted as amiter. The corre-
sponding primary inputs are connected as well. The goal is toobtain one circuit that
has onlyk primary inputsx1 . . .xk andm primary outputsz1 . . . zm, zi = XOR(yi,y′i). In
order to disprove the equivalence, it is necessary to identify at least one miter which
evaluates to 1 for an input assignment, i.e. it is necessary to find an input assign-
ment for which the corresponding outputsyi andy′i provide different values and thus
zi = 1. This can be done by checking one miter after another (i.e. aCNF is created
and solved for each miter output separately) or by the all outputs approach (all miter
outputs are connected using them-input OR gate; thus one CNF is created and solved
only). Note that both approaches are used in practice. Figure 4 shows the all output
approach adopted in this article.

4.2 Proposed Fitness Function

Assume thatC is a k-input/m-output circuit composed ofn logic gates and the goal
is to reduce the number of gates. The first step involves creating a reference solution
by convertingC to the corresponding CNFϕ1 using the approach described above.
Let X = {x1,x2, . . . ,xN} be a set containing the variables used withinϕ1 and|X | =
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Fig. 4 Equivalence checking of two combinational circuits using the all outputs approach

N = k + n. The variables corresponding with the primary inputs will be denoted as
x1, . . . ,xk and the auxiliary variables generated during the transformation process will
be denoted asxk+1, . . . ,xk+n. Let the lastm variablesxN−m+1, . . . ,xN correspond with
the primary outputs ofC (see Fig. 5a).

The fitness calculation consists of the following steps:

1. A new instance of the SAT solver is created and initializedwith the reference
circuit. This comprises creating ofN new variables and submitting all clauses of
ϕ1 into the SAT solver.

2. A candidate solution is transformed to a list of clauses that are submitted into
the SAT solver (see Fig. 5b). The transformation includes reading the CGP rep-
resentation according to the indexes of the nodes. If a CGP node contributes to
the phenotype, it is converted to the corresponding CNF according to Table 2,
otherwise it is skipped. In particular, for each node a new variable is created and
a list of corresponding CNF clauses is submitted into the SATsolver. The fol-
lowing input mapping is used in order to form a CNF: If an inputof the node
situated in rowir and columnic is connected to the primary inputi, variablexi is
used; otherwise variablexN+i is used wherei = (ic −1).nr + ir denotes the index
of the corresponding node. Let variables corresponding with the primary outputs
of a candidate solution be denotedxN′−m+1, . . . ,xN′ whereN′ is the number of
converted CGP nodes.
Note that although it is possible to include unused gates to CNF without affecting
the reasoning, it is preferred to minimize the number of clauses and variables of
the resulting CNF since it can decrease the decision time.

3. Miters are created. The XOR gates are applied to each output pair which means
thatm new variables denoted asy1, . . . ,ym have to be created and CNFs of XOR
gatesyi = XOR(xN−i,xN′−i), i = 0. . .m−1 have to be submitted to the SAT solver
(see Fig. 5c).

4. In order to guarantee that the resulting CNF will be satisfiable if and only if at
least one miter is evaluated to 1, the outputs of the miters generated in the previous
step have to be combined together. The solution is based on combining the outputs
by m-input OR gatez = OR(y1, . . . ,ym). The corresponding CNF representation
has the form of(¬z ∨ x1 ∨ ·· · ∨ xk)∧

∧k
i=1(¬xi ∨ z). In order to provide a CNF



12

Fig. 5 Example of transformation of reference circuit, candidatecircuit and miter to CNF

instance capable of the equivalence checking, it is necessary to append the clause
(z) that impliesz = 1, thus(¬z∨y1∨·· ·∨yk)∧

∧k
i=1(¬yi∨z)∧(z) = (y1∨·· ·∨yk).

So, in order to finish the CNF, clause(y1∨·· ·∨yk) has to be submitted to the SAT
solver (see last clause in Fig. 5c).

5. The SAT solver determines whether the submitted set of clauses is satisfiable or
not. If the CNF is satisfiable, the fitness function returns 0 (the candidate circuit
and the reference circuit are not equivalent); otherwise the number of utilized
gates is returned.
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4.3 Time of Candidate Circuit Evaluation

In order to compare the time of evaluation for the common fitness function (eq. 1) and
the proposed SAT based fitness function, the parity circuit optimization problem has
been chosen. The design of a parity circuit consisting of AND, OR and NOT gates
only is considered as a standard benchmark problem for genetic programming [28].
The relevant CGP parameters are as follows:λ = 4,Γ = {AND,OR,NOT, Identity},
l = Ng, nc = Ng andnr = 1 whereNg is the number of gates of the reference circuit.
One gene of the chromosome undergoes the mutation only. The CGP implementation
uses the parallel evaluation described in Section 3.2.4. The initial circuit (seed) has
been obtained by mapping a parity circuit consisting of XOR gates (parity tree) to the
2-inputs gates using ABC. Table 3 gives the mean evaluation time (out of 100 runs)
for three fitness functions – the standard fitness function ofCGP (tcgp), the optimized
and accelerated evaluation (tocgp, see Section 3.2.4) and the SAT-based method (tsat).
Last two columns contain the achieved speedup of proposed approach against the
common and accelerated CGP. The experiments were carried out on Intel Core 2
Duo 2.26 GHz processor. Forni ≥ 26 only extrapolated values are given as running
the experiments is not practical. The MiniSAT 2 (version 070721) has been used as a
SAT solver [9] because it can be effectively embedded into a custom application.

Table 3 The mean evaluation time for the standard fitness function ofCGPtcgp, CGP with optimized and
accelerated evaluationtocgp and the SAT-based CGPtsat . Symbol ‘*’ denotes extrapolated values.

seed tcgp tocgp tsat tcgp:tsat tocgp:tsat

ni [gates] [ms] [ms] [ms] speedup speedup

12 69 0.13 0.04 0.348 0.3 0.1
14 87 0.54 0.16 0.438 1.2 0.4
16 103 2.54 0.27 0.531 4.8 0.5
18 115 11.45 1.20 0.722 15.9 1.7
20 125 51.44 5.17 0.776 66.3 6.7
22 135 220 25.11 0.804 273.6 31.2
24 145 1328 139 0.903 1471 153.9
26 171 5962* 626* 1.028 5799 608
28 181 26748* 2820* 1.195 22383 2359
30 199 119996* 12703* 1.211 99088 10489
32 215 538327* 57207* 1.348 399352 42438

Sincetcgp increases exponentially with the increasing number of circuit inputs,
the standard CGP approach provides a reasonable evaluationtime for parity circuits
that contain up to 22 inputs. The optimized evaluation is applicable for up to 24
inputs. In case of the SAT-based approach the evaluation time is almost similar inde-
pendently of the number of candidate circuit inputs.
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4.4 CGP-Specific Performance Improvement Techniques

Although the system can be used directly as it was proposed inthe previous section,
we have introduced some techniques allowing the SAT solver even to increase the
performance.

The speed of the SAT-based equivalence checking depends mainly on the number
of paths that have to be traversed in order to prove or disprove the satisfiability. The
number of paths increases with the increasing number of outputs to be compared, i.e.
more outputs to be compared more time the SAT-solver needs for the decision. In
order to simplify the decision problem and increase the performance, CNF reduction
based on finding structural similarities were proposed in literature.

In our case we can apply a very elegant and simple solution. Since every fitness
evaluation is preceded by a mutation, a list of nodes that aredifferent for the parent
and its offspring can be calculated. This list can be used to determine the set of out-
puts that have to be compared with the reference circuit and only these outputs are
included into CNF. This can be achieved by omitting the unnecessary outputs during
the miter creation phase.

In order to decrease the number of variables as well as the number of clauses
in NOT-intensive circuits, the following approach is proposed. Letyi = NOT (xi),
then the NOT gate can be subsumed to CNF of every gate that is connected directly
to outputyi. Using literal¬xi instead ofyi and literalxi instead of¬yi respectively
solves the problem.

Note that proposed approach can easily be combined with other methods designed
to speedup the SAT-based equivalence checking, e.g. circuit preprocessing, incremen-
tal approach or improved CNF transformation [6,8,2,50].

Table 4 The mean time needed to evaluate a candidate solution for plain and optimized SAT-based fitness
method

seed tsat tosat tsat : tosat

circuit ni no [gates] [ms] [ms] speedup

apex1 45 45 1408 49.80 15.52 3.21
apex2 39 3 235 3.54 2.52 1.40
apex3 54 50 1407 34.56 13.93 2.48
apex5 117 87 784 17.45 5.07 3.44

In order to evaluate the impact of proposed improvements, four complex circuits
have been selected for experiments from the LGSynth93 benchmark set. This bench-
mark set includes nontrivial circuits specified in BLIF format that are traditionally
used by engineers to evaluate quality of synthesis algorithms. The benchmark cir-
cuits were mapped to 2-input gates using SIS. Parameters of selected circuits as well
as obtained results are summarized in Table 4. It can be seen that even if the circuits
exhibit higher level of complexity in comparison with parity circuits, the average time
needed to perform the fitness evaluation remains still reasonable. Note that the same
experimental setup mentioned in Section 4.3 has been utilized. Obtained results show
that the average time needed to evaluate a candidate solution has been reduced three
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times in average by means of applying the proposed steps during the transformation
of a candidate solution to corresponding CNF.

5 Results

This section surveys experiments performed to further evaluate the proposed method.
In particular, the effect of population sizing, CGP grid sizing, mutation rate and time
allowed to evolution are analyzed for benchmark circuits. In all experiments we used
the optimized SAT-based fitness function.

5.1 Population Size

Table 5 surveys the best (minimum) and mean number of gates obtained forλ = 1 and
λ = 4 out of 100 independent runs. The number of evaluations was limited to 400,000
which corresponds with 100,000 generations for ES(1+4) and400,000 generations
for ES(1+1). The mutation operator modified 1 gene of the chromosome,l = nc and
Γ = {Identity,AND,OR,NOT,XOR,NAND,NOR}. The best values as well as mean
values indicate that ES(1+1) performs better than ES(1+4) which corresponds with
our intuitive assumption of very rugged fitness landscape.

Table 5 The best and mean number of gates for different population sizing.

seed ES 1+4 ES 1+1
circuit ni no [gates] best mean best mean

apex1 45 45 1408 1240 1267 1201 1255
apex2 39 3 235 138 155 132 146
apex3 54 50 1407 1336 1350 1331 1347
apex5 117 87 784 736 746 730 743
mean 959 863 880 849 873

5.2 Mutation Rate and CGP Grid Size

Table 6 gives the best (minimum) and mean number of gates obtained for different

mutation rates (1, 2, 5, 10, 15 genes) and CGP grid setting (nc×1 versusnc×n(i)
r ). It

will be seen below that the number of rowsn(i)
r is variable. The number of evaluations

was limited to 400,000 and results were calculated out of 100independent runs of
ES(1+1). Table 6 also includes the mean number of bits that were included to create
miters and the mean time of a candidate circuit evaluation.

The best results were obtained for the lowest mutation rate.The higher mutation
rate the higher mean number of gates in the final circuit. While the mean number
of miters grows with increasing of the mutation rate, the mean evaluation time is
reduced. This phenomenon can be explained by the fact that higher mutation rate
implies more changes that are performed in circuits and thusmore miters have to be
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considered. On the other hand, because of many (mostly harmful) changes in a circuit
it is easier to disprove the equivalence for SAT solver and soreduce the evaluation
time.

The settingsnc ×1 or nc × nr do not have a significant impact on the resulting
number of gates on average. Recall that the values ofnc andnr are given by the circuit

topology which is created by the SIS tool. The number of rows (n(i)
r ) is considered as

variable for a given circuit in order to represent the circuit optimally. For example, the
1408 gates of the apex1 benchmark is mapped on the array of 19x189 nodes; however
only 1, 5, 7, 14, 17, 26, 43, 57, 84, 117, 142, 177, 189, 187, 139, 89, 51, 27, 40 gates
are utilized in columnsi = 1. . .19. The advantage of usingnr > 1 is that delay of the
circuit is implicitly controlled to be below a given maximumvalue.

Table 6 The best (minimum) and mean number of gates, the mean number of miters and the mean evalu-

ation time for different mutation rates (1–20 genes) and CGPgrid setting (nc ×1 versusnc ×n(i)
r )

mutated genes (nc ×1) mutated genes (nc ×n(i)
r )

1 2 5 10 15 20 1 2 5 10 15 20

apex1 - 1408x1 apex1 - 19x189
best 1240 1290 1351 1377 1382 1393 1260 1290 1351 1379 1385 1392
mean 1269 1313 1367 1387 1396 1399 1287 1326 1369 1390 1395 1399
mean (miters) 3.8 5 8.2 12.3 15.3 17.6 3.6 4.8 8 12.2 15.2 17.6
meantosat [ms] 15.8 11.2 8.8 7.7 7.7 7.2 11.8 11.5 9.7 7.8 7.9 6.7

apex2 - 235x1 apex2 - 22x23
best 164 159 166 181 195 200 165 167 172 186 194 201
mean 170 172 181 195 203 209 171 174 182 195 205 209
mean (miters) 1.8 2.1 2.5 2.7 2.8 2.9 1.8 2 2.5 2.7 2.8 2.9
meantosat [ms] 1.7 1.7 1.4 1.2 1.1 0.9 1.7 1.6 1.4 1.2 1.0 1.0

apex3 - 1407x1 apex3 - 24x193
best 1341 1358 1383 1392 1395 1396 1345 1362 1383 1392 1396 1398
mean 1354 1369 1389 1397 1399 1400 1357 1372 1390 1397 1400 1401
mean (miters) 2.6 3.6 6.2 9.4 12 14 2.6 3.5 6.1 9.4 11.9 14.1
meantosat [ms] 10.5 10.1 9.0 11.4 8.3 8.0 10.5 10.3 9.8 8.8 9.8 7.2

apex5 - 784x1 apex5 - 34x117
best 740 741 755 765 767 774 741 750 757 767 768 771
mean 748 753 764 773 775 779 751 757 766 773 775 777
mean (miters) 4.6 6.4 11.1 18.1 23.7 28.4 4.6 6.4 11.2 18.1 23.7 28.4
meantosat [ms] 3.3 3.1 3.0 2.9 2.9 2.7 3.1 3.2 2.9 3.0 3.2 2.9

5.3 Parity Benchmarks

In Section 4.3 we compared the evaluation time of the standard fitness function and
the SAT-based fitness function in the task of parity circuitsoptimization. Table 7
shows concrete results - the minimum number of gates that were obtained for 12–38
input parity circuits by running the proposed method for 3, 6, 9 and 12 hours on a 2.4
GHz processor. The results are averaged from 100 independent runs of CGP with the
following setting: ES(1+1), 1 mutated gene/chromosome,Γ = {Identity,AND,OR,NOT},
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and CGP array ofnc×1 nodes wherenc is the number of gates in the seed – the initial
circuit created by SIS. Column TG denotes the number of gatesof the optimal solu-
tion which is known in this case. It can be calculated as 4w wherew is the number
of XOR gates in the optimized parity tree and 4 denotes the number of gates fromΓ
needed to form a single XOR gate.

We can observe that the proposed method provides an optimal solution forni ≤ 20
and almost optimal solution for larger problem instances. Last column shows that the
proposed method improves the original solution of SIS by 28–42 %.

Table 7 The minimum number of gates that were obtained for parity circuits by running the proposed
method for 3, 6, 9 and 12 hours. TG gives the optimum solution.

seed run-time TG relative
ni [gates] 3h 6h 9h 12h [gates] improv.

12 69 45 44 44 44 44 36 %
14 87 54 53 52 52 52 40 %
16 103 64 61 60 60 60 42 %
18 115 74 70 69 69 68 40 %
20 125 82 79 77 76 76 39 %
22 135 95 91 88 87 84 36 %
24 145 110 101 98 96 92 34 %
26 171 134 120 114 111 100 35 %
28 181 151 132 124 121 108 33 %
30 199 165 140 132 129 116 35 %
32 215 186 169 159 143 124 33 %
34 227 214 187 172 160 132 30 %
36 237 220 192 168 162 140 32 %
38 247 235 219 193 177 148 28 %

5.4 LGSynth93 Benchmarks

Table 8 shows the minimum and mean number of gates that were obtained for real-
world benchmark circuits of the LGSynth93 suite (we have selected those with more
than 20 inputs) by running the proposed method for 3, 6, 9 and 12 hours on a 2.4 GHz
processor. The results are averaged from 100 independent runs of CGP with the fol-
lowing setting: ES(1+1), 1 mutated gate/chromosome,Γ = {Identity,AND,OR,NOT,
XOR,NAND,NOR}, and CGP array ofnc×1 nodes wherenc is the number of gates
in the seed circuit. The initial circuit was obtained by converting the PLA files of
LGSynth93 circuits to the 2-input gates ofΓ and optimizing them by SIS. Last col-
umn shows that the proposed method improves the original solutions obtained from
SIS by 22–58%.

5.5 Seeding the Initial Population

In order to investigate the role of seeding of the initial population we have used two
seeds obtained after 1 and 1000 iterations of the SIS script.Figure 6 shows that con-



18

Table 8 The minimum (even rows) and mean number (odd rows) of gates for LGSynth93 circuits obtained
from the proposed method after 3, 6, 9 and 12 hours.

seed run-time relative
circuit ni no [gates] 3h 6h 9h 12h improv.

apex1 45 45 1408 1179 1083 1026 990 30 %
1230 1108 1042 1001 29 %

apex2 39 3 235 104 101 99 98 58 %
119 102 100 98 58 %

apex3 54 50 1407 1280 1223 1189 1167 17 %
1333 1240 1202 1175 16 %

apex5 117 87 784 675 649 640 633 19 %
692 661 644 636 19 %

cordic 23 2 67 32 32 32 32 52 %
33 32 32 32 52 %

cps 24 109 1128 870 788 737 698 38 %
909 806 757 713 37 %

duke 22 29 430 286 274 270 268 38 %
296 279 272 269 37 %

e64 65 65 192 133 130 129 129 33 %
139 131 129 129 33 %

ex4p 128 28 500 404 399 396 394 21 %
414 401 397 395 21 %

misex2 25 18 111 76 73 72 70 37 %
82 74 72 71 36 %

vg2 25 8 95 79 75 74 74 22 %
83 77 74 74 22 %

vergence curves for two selected benchmark circuits - apex1(the largest one) and
ex4p (the highest number of inputs) - are very similar for those seeds. We can also
observe how the progress of evolution is influenced by restarting CGP (every 3 hours;
using the best solution out of 100 independent runs) which can be also considered as
a new seeding. Figure 6 shows that repeating the synthesis scripts (SIS and ABC are
compared) quickly lead to a small reduction of the circuit size; however, no further
improvements have been observed in next 1 hour.

6 Discussion

Applying the SAT solver in the fitness function allowed us to significantly reduce
the computational requirements of the fitness function for such combinational circuit
optimization problems for which a fully functional initialsolution exists before the
optimization is started. In this category of problems, we were able to optimize much
larger circuit instances than standard CGP. Furthermore, we reduced the number of
gates in solutions that can be delivered by conventional synthesis methods. However,
proposed method requires significantly more computationaltime in comparison to
conventional synthesis tools.

Although the results for LGSynth93 benchmarks are very encouraging, the SAT-
based combinational equivalence checking can definitely perform unsatisfactory for
some problem instances, for example for multipliers where the number of paths tra-
versed by the SAT solver grows enormously with the increasing number of inputs.
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Fig. 6 Convergence curves for the apex1 and ex4p benchmarks. The mean, minimum and maximum num-
ber of gates from 100 independent runs of CGP when seeded using the result of the 1st iteration and the
best result out of 1000 iterations of the SIS tool. ABC and SISwere repeated until stable results observed.
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In order to improve performance of the SAT solver in this particular case, various
techniques have been proposed to reduce the equivalence checking time [1,2]. The
proposed method is assumed to be able to handle large-scale multipliers optimiza-
tion if more advanced version of SAT solver is utilized. Other techniques exist that
can be employed to improve the proposed fitness function, e.g. CNF preprocessing,
BDD-based checking, hierarchical equivalence checking etc. [25].

7 Conclusions

We demonstrated that some applications of evolvable hardware could benefit from
formal verification techniques. The main advantage of our method is that the time of
evaluation can significantly be reduced in comparison to thestandard fitness function
in cases when a fully functional solution exists before optimization is started. Con-
sequently, we demonstrated that the circuit post-synthesis optimization conducted by
CGP is applicable on complex digital circuits. CGP reduced the number of gates for
the LGSynth93 benchmark circuits by 37.8% on average with respect to the SIS tool.
Future research will be oriented towards improving the formal verification module by
using more sophisticated verification algorithms and applying the proposed method
in various domains, including software evolution, developmental CGP and numerous
real-world evolvable hardware problems.
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