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Abstract— The optimization of sensor thresholds and fusion 
rule for heterogeneous and correlated sensor suite is 
accomplished through a particle swarm optimization algorithm. 
Different correlation structures are assumed and the effect of 
correlation on the choice of final fusion rule and thresholds is 
analyzed. Optimal decision fusion for correlated sensors includes 
estimation of 2n joint probabilities. Bahadur-Lazarfeld 
expansion is used to reduce the computational burden. 
Bahadur-lazarfeld expansion reduces the burden to evaluation 
of N joint probabilities. Numerical integration is proposed to 
evaluate the joint probability. Examples using Gaussian 
distributions assumed under both the hypothesis are presented. 
The results achieved using a particle swarm optimization 
algorithm are compared to the traditional decision fusion 
strategies based on the fusion methodology developed by Moshe 
Kam et al.  

I. INTRODUCTION  

In decision level fusion, using binary hypothesis, each 
sensor applies thresholds and gives decision regarding the 
presence or absence of phenomena. The decisions from 
multiple sensors are fused at the fusion processor producing a 
decision. This type of decision-making minimizes the 
communication bandwidth of a sensor network by 
transmitting a single bit representing the decision to the fusion 
center.  

Apart from the obvious bandwidth advantages decision 
level fusion weighs each sensor’s decision based on the 
sensor’s performance characteristics. The weighting of a 
sensor’s observation (decision) is buried in the decision fusion 
processing. Hence, decision level fusion can be very 
advantageous in accuracy as well as bandwidth when the 
sensors are statistically disparate.  

The Majority voting rule and Chair-Varshney [13] optimal 
fusion rule are two examples of decision-level fusion schemes. 
The Chair- Varshney (CVR) [13] optimal decision fusion rule 
is achieved using the individual sensor performance indices. 
The resulting optimal fusion rule from the CVR can be the 
majority-voting rule but is not limited to it.         

      The biggest problem preventing optimum performance 
in decision level fusion however, is the optimal setting of 
individual decision thresholds. There are 22^Npossible fusion 
rules for a binary hypothesis and N sensors system. Most of 
the sensor fusion work done in the past neglects all possible 
rules at decision level. Also, the decision threshold for each 
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individual sensor is optimally set to minimize the error [2]. 
This is done even before fusion is carried out. This typically 
entails selection of an operating point from the Receiver 
Operating Characteristic (ROC) curve for the individual 
sensors, which will minimize the error for the given costs of 
false alarm. Once the decision thresholds for individual 
sensors are set, the majority voting rule or the CVR is used as 
the fusion rule. This method, however, does not guarantee 
optimum performance after fusion. Error is defined under 
Bayesian criterion in this paper.  

Most fusion work assumes independence and the CVR is 
applied minimizing errors. Some of our work in the past also 
optimized the fusion system under the independence 
assumption [19]. There have been some studies dealing with 
correlation among sensors. Kam et al. [15] presented optimal 
fusion rule for a distributed detection system with correlated 
sensors. The local sensor thresholds are fixed before finding 
the optimal fusion rule.  Willet et al. evaluated different fusion 
rules for 2 sensors and defined regions of correlation in which 
different rules can be applied. They also concluded that the 
optimal fusion rule, in the case of dependence, is not limited to 
monotonic fusion rules [17]. This makes the problem of 
searching for optimal thresholds and optimal fusion rule 
intractable.  

Tang et al. presented the gradient descent approach for 
correlated sensors under multiple hypotheses [24]. The 
algorithm is designed for sensors that have strictly concave 
receiver-operating curves, ROCs. Special conditions need to 
be fulfilled for the ROCs to be concave [23].  The algorithm is 
a top down approach and relies on gradient information. The 
variable of interest is determined, while others are fixed. 
When sensor observations are correlated, this requires further 
approximation and poor performance.  

The wide variety of applications of sensor systems relying 
on statistical inference and distributed detection motivates this 
research. The ROCs of the sensors do not satisfy the required 
conditions, in order to be solved by the traditional 
optimization approaches. For example, for the detection of an 
intruder the likelihoods and the ROCs are obtained using 
training data and are not strictly concave. 

In this paper, a particle swarm optimization based 
algorithm is presented to design the optimal local thresholds 
and the fusion rule for a distributed detection with correlated 
heterogeneous sensors. Particle swarms start with multiple 
solutions and use the performances of these solutions to 
further guide the search. The algorithm is compared to two 
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traditional decision fusion strategies.  
A two-step optimization procedure is adopted for this case. 

First the optimal thresholds are achieved using the likelihood 
ratio test (LRT). The second step involves determination of 
the optimal fusion rule using the formulation presented in this 
paper. First, ignoring the underlying correlation, CVR is 
applied, determining the fusion rule.  A generalized version of 
the CVR is adopted from  [15] that deals with the correlation 
between the sensors is applied as a second strategy.  The 
performance benefits due to use of this new rule over CVR are 
illustrated. The PSO based optimization technique is applied 
and the resultant is compared with the two strategies detailed 
in previous paragraph.  
      The paper presents the results achieved for sensors whose 
distributions under both the hypotheses are assumed to be 
multivariate Gaussian with a given mean and covariance 
matrix. The experimental sensor suite used in this paper is 
presented in the APPENDIX.  

The rest of paper is organized as follows. In section 2, 
decision level fusion is detailed. The estimation of error 
probabilities in for correlated and independent sensors at 
decision level fusion are presented.  The traditional decision 
fusion strategies are detailed. The problem of optimal decision 
fusion in case of independent sensors and correlated sensors is 
presented as well as its intractability. PSO techniques are 
discussed in Section 3. Formulation of the particle for this 
problem, Bayesian cost function, and PSO settings are 
detailed in this section. Section 4 presents the results achieved 
on multivariate Gaussian distributions. Section 5 concludes 
the paper.  

II. DISTRIBUTED DETECTION  

Consider a binary hypothesis-testing problem with sensors 
evaluating observations that are conditionally dependent, the 
two hypotheses are 

0H  : Presence of phenomena 

 1H  : Absence of phenomena  
The two types of errors commonly known as probability of 
false alarm and probability of miss are   
                           0 0( 1/ )FAP P U H= =                           (1) 
                              0 1( 0 / )MP P U H= =                               (2) 

Where 0U  is the decision of the fusion processor, which 

takes in the decisions from the local sensors and fuses them, 
using the fusion rule.  Also probability of detection is given 
by,  

1D MP P= −  
In the following sections, these error probabilities for 

fusion involving independent and dependent sensors are 
derived.  

A. Bayesian Error in Decision Fusion  
In this paper an assumption of equal a prior probabilities is 

made, and an additional cost of making errors is defined, 
which is the cost of false alarm and cost of miss. These are 

used to evaluate the fusion system performances.  The 
Bayesian cost (error), which the paper intends to minimize, is  

                      FA FA M MR C P C P= × + ×                            (3) 
where  
                                 2FA MC C= −                                    (4) 
CFA is cost of false alarm, CM is cost of a miss and PFA and 

PM are the error probabilities defined in (1) and (2) and are 
derived in following sections. 

Equation (3) is a weighted multi-objective function, which 
is minimized by the optimization routine. It is assumed that the 
costs of making an error are given as requirements to the 
system. Note that the costs of detection and true miss are set to 
zero and are not part of (3).  

B. Decision Level Fusion for N Sensor System Under the 
Assumption of Independence 
In this section the calculation of the error probabilities for a 

N sensor system given the individual thresholds and fusion 
rule is derived. FAP , MP  of the fused system is calculated 

from the fusion rule and jth sensor’s j
FAP  and j

MP .  
TABLE 1: FUSION RULE FORMATION FOR TWO SENSORS 

1u  2u  f 

0 0 
0d  

0 1 
1d  

1 0 
2d  

1 1 
3d  

For example, with two sensors the fusion rule consists of 4 
bits, as presented in Table 1. In Table 1, 1u is the first sensor 

decision, and 2u is the second sensor decision. The fusion rule 

is of length l bits where  
                                      2logl p=                                 (5)  

where 22
N

p = , and, N is the number of sensors. 

The global decision replaces { 0d , 1d , 2d , 3d } with 0s 

and 1s in their respective locations within f. The global error 
rates can then be computed directly from  

                   
1

0 1

p N

FA i j
i j

P d er
−

= =

� �
= × � �

� �
� ∏                               (6) 

where  

               
1 ,       ( 0)

,            ( 1) 

j
FA j

j j
FA j

P u
er

P u

� − =�= � =��
                     (7) 

 
and                            

                   
1

0 1

(1 )
p N

M i j
i j

P d er
−

= =

� �
= − × � �

� �
� ∏                  (8) 

where  
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,            ( 0)

1 ,        ( 1) 

j
M j

j j
M j

P u
er

P u

� =�= � − =��
                    (9) 

j
FAP is the probability of false alarm of the jth sensor and is 

given by  

                     0( 1/ )j
FA jP P u H= =                         (10) 

                     0( / )
j

j
FA j jP P x H dx

λ

∞

= 	                           (11) 

and  

                        1( 0 / )j
M jP P u H= =                        (12) 

                        1( / )
j

j
M j jP P x H dx

λ

−∞

= 	                       (13) 

where jλ  is the threshold for the sensor. ix is the raw output 

of the sensor conditioned over H1 or H0. Hence, FAP  is a 
function of thresholds (local decision rules) for the sensors 
and the optimal fusion rule or simply can be shown as  

                       1 2( , .......... , )FA nP g fλ λ λ=                        (14) 
where, ‘f’ is the fusion rule. Similarly, PM is also the function 
of local decision rules and fusion rule. 

1) Chair-Varshney Optimal Fusion Rule 
Traditional decision level fusion strategies apply the 

maximum likelihood ratio test as in, 

                  

0

1

0

1

( / )
log log

( / )
j FA

j M

H
P x H C
P x H C

H



�

                    (15) 

to derive the optimal threshold for each sensors measurement. 
Then the threshold is applied to arrive at a hard decision.  

The hard decisions can be combined using a majority 
voting rule or CVR as in   

 

  
( ) ( )

0

1

1

1
log 1 log log

21
j j

j j

N
FAM M

j j
FAj FA FA

H
P P C

u u
P CP

H
=

� � �� �− <� � � � � �� �+ −� � � � � �� � > −� �−� � � �� � � �� �
�

   (16) 

where uj is the decision of the jth sensor. In this paper, 
comparisons are done between the optimized decision level 
fusion and traditional decision level fusion. It is important to 
realize that the Chair-Varshney (CVR) rule simplifies the 
problem by assuming orthogonality of the sensors. The CVR 
thus minimizes the Bayesian error cost function in (3) while 
oversimplifying the problem resulting in a non-optimum 
fusion rule as well as over estimating performance of the rule.  

C. Decision Level Fusion for N Sensor System With 
Correlation 
In the previous section, the error probabilities are estimated 

for the case of orthogonal sensors. The resulting independence 

decouples all the joint probabilities allowing joint 
probabilities of differently grouped local sensor decisions to 
be estimated using individual error probabilities. Hence, 
reducing performance estimates to only N, i.e. (11) and (13).  

In this section, the error probabilities are estimated in the 
case of correlation.  Let 1 2[ , ..... ]nU u u u= be the vector of 
local decisions. It is assumed that sensors are correlated under 
both the hypotheses. This leads to a generic, more complex 
formulation of the problem. Note that for ‘N’ sensors we need 
to estimate the joint probabilities for 2n  combinations in U. 
For each combination, a multivariate integral needs to be 
evaluated, which is an expensive operation. This process can 
become tedious as number of sensors increase.  

An alternative method uses Bahadur-Lazarfeld expansion 
[21, 15]. Bahadur-Lazarfeld expansion allows the 
computation of all the joint probabilities by estimating only N 
multivariate integrals, where N is the number of sensors. 
Alternative methods of expansions and evaluation of these 
joint probabilities are given in [21]. The method involves the 
following steps:  

1.  The derivation first assumes normalized local decisions 
giving a random variable zj with zero mean and unit variance 
given by  

                                      h

h

h h

j j
j

j j

u p
z

p q

−
=                               (17) 

where, ( 1 | )
hj j hp P u H= = and 1  

h hj jq p j= − ∀ .  

2.  Let  

                        
1 1

(1 )
1

1
( ) ( ) ( )j j

n u u
h j j

j
P U p q −

=
=

= ∏                    (18) 

and  

                        
0 0

(1 )
0

1
( ) ( ) ( )j j

n u u
h j j

j
P U p q−

=
=

= ∏                    (19) 

Note: (18) and (19) are equivalent to the products as the in 
(6) and (8). (6) and (8) give joint probability for a given local 
decision vector in the case orthogonality. 

 3.  In the case of correlation, the joint probability can  be 
estimated using [21, 15] 

  ( ) ( ) 1 ......
h h h h h h h

hh ij i j ijk i j k
i j i j k

P U P U z z z z zγ γ
< < <

� = + + +� �� �� �
      (20) 

It is clear from (20) that the joint probability estimates in 
the case of correlation are the sum of the joint probabilities 
from the independence case except for an additional 
correlation factor.  

4. The 
1 h

k

j
j

z
=

∏ ’s are the Bahadur-Lazarfeld polynomials 

given in [21, 15]. The variable, γ , is the correlation 

coefficient and is given by  

                            
123...

1

|
h h

n

n j h
j

E z Hγ
=

� �
= � �

� �
∏                        (21) 

where 
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            ( 1/ )
( 1/ ) (1 ( 1/ ))h

i i h
i

i h i h

u P u H
z

P u H P u H
− ==

= × − =
           (22) 

There are 2 1N − coefficients for ‘N’ sensors. In (20) 
however, only 2 1N N− − are calculated since the correlation 
coefficients are zero for ‘N’ of them with single z’s. In many 
situations higher ordered coefficients can be ignored [21, 15].   

Note that γ  is independent of the local decision vector U. 

It is the expected value of product of zj’s conditioned on the 
hypothesis h. In (20) γ ’s are multiplied by zj’s which are 

dependent on the local decision vector U as given in (22). An 
expansion of γ  in case of two sensors is given by  

    

,

( | ) ( ( 1 | ) ( 1 | ))

( 1 | ) (1 ( 1 | ))h

i j h i h j h
ij

k h k h
k i j

E u u H P u H P u H

P u H P u H
γ

=

− = × =
=

= × − =∏
    (23) 

Based on the joint probability estimates derived for the 
conditional dependence case the global error probabilities are 
estimated to be  

                               { }0( )FA i
U

P d P U= ×�                   (24) 

and  

                              { }1( )M i
U

P d P U= ×�                    (25) 

where, d is from table 1 and similar to as in (6), Ph(U) are 
given by (20).  

1) Moshe Kam (MKR) Optimal Fusion Rule   
The individual thresholds for the sensors are found using the 
LRT given in (15). Given the joint probability estimates under 
both the hypotheses for different local decision vectors, the 
optimal fusion rule is again derived using the well-known 
LRT [15] as in 

                                 

0

1

0

1

( )
log log

( )
FA

M

H
P U C
P U C

H



�

                  (26) 

which results in,  
 

   1 1 1 1 1 1 1

0 0 0 0 0 0 0

0

1

1 ........
log ( )

1 ......

ij i j ijk i j k
i j i j k

FA
ij i j ijk i j k

i j i j k

H
z z z z z

C
z z z z z

H

γ γ

γ γ
< < <

< < <

� � + + +
<� ���Ω + Λ� ��� >+ + +� ���� �� �

� �

� �

  (27) 

where, Ω corresponds to the left hand side of  (16), 
( )FACΛ corresponds to the right hand side of (16). This is 

traditional decision fusion strategy applied in case of 
conditional dependence. This gives close to optimal 
performance if the sensors are statistically identical. This is 
not the case in many real world applications. The statistical 
disparity among sensors is significantly high.   The two-step 
optimization procedure adopted leads to poorly performing 
distributed detection systems. To achieve the full benefits of 
the distributed detection one needs to simultaneously optimize 
the thresholds and the fusion rule. The complexity of 

optimizing thresholds and the fusion rule is NP Complete 
[23].  

III. PARTICLE SWARM OPTIMIZATION  

The PSO algorithm was originally introduced in terms of 
social and cognitive behavior by Kennedy and Eberhart in 
1995 [3].  The power in the technique is its simple 
computations and sharing of information as it internally 
communicates imitating the social behavior of individuals. 
The individuals, called particles are flown through the 
multi-dimensional search space with each particle 
representing a possible solution to the multi-dimensional 
problem. Each solution’s fitness is based on a multi-objective 
performance function related to the optimization problem 
being solved.  
The movement of the particles is influenced by two factors 
using information from iteration-to-iteration as well as 
particle-to-particle. As a result of iteration-to-iteration 
information, the particle stores in its memory the best solution 
visited so far, called pbest, and experiences an attraction 
towards this solution as it traverses through the solution search 
space. As a result of the particle-to-particle information, the 
particle stores in its memory the best solution visited by any 
particle, and experiences an attraction towards this solution, 
called gbest, as well. The first and second factors are called 
cognitive and social components, respectively. After each 
iteration the pbest and gbest are updated for each particle if a 
better or more dominating solution (in terms of fitness) is 
found. This process continues, iteratively, until either the 
desired result is converged upon, or it’s determined that an 
acceptable solution cannot be found within computational 
limits.    
The PSO formulae define each particle in the D-dimensional 
space as ),....,,( 21 iDiii xxxX = , where the subscript ‘i’ 

represents the particle number and the second subscript is the 
dimension. The memory of the previous best position is 
represented as ),....,,( 21 iDiii pppP =  and a velocity along 

each dimension as ),....,,( 21 iDiii vvvV = . After each 

iteration, the velocity term is updated and the particle is pulled 
in the direction of its own best position, Pi and the global best 
position, Pg, found so far. This is apparent in the velocity 
update equation, [3], as in  
 

      ( 1)  t
idV + =

( ) ( ) ( )
1

( ) ( )
2

[0,1] ( )

[0,1] ( )

t t t
id id id

t t
gd id

V U p x

U p x

ω ψ
ψ

× + × × − +

× × −
 .        (28) ����

                          
)1()()1( ++ += t

id
t

id
t

id VXX                        (29) 

where U [0,1] is a sample from a uniform random number 
generator, t represents a relative time index, 1ψ  is a weight 

determining the impact of the previous best solution, and 2ψ  

is the weight on the global best solution’s impact on particle 
velocity. For more details of the particle swarm optimization 
algorithm the reader is referred to [11]. 
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A. PSO for Decision Level Fusion  
Each particle in this problem has ‘N’ dimensions, where N 

is the number of sensors in   the sensor network. Each of the N 
dimensions is a threshold at which a particular sensor is set. 
The fusion rule, which determines how all the decisions from 
the sensors are fused is calculated using the MKR. Hence the 
representation of each particle is, 1 2( , .......... )i i i inX λ λ λ= . The 

sensor thresholds are continuous. The fusion rule, however, is 

a binary number having a length of p2log  bits, where 
N

p 22= for ‘N’ sensors, with a decimal value varying from 

0 ( ) 1dec f p≤ ≤ − . The two objectives for this problem 

are given by (24), (25). The goal is to minimize both the PFA 
and PM. At each iteration, the particles representing the 
solution for the problem are evaluated for these objectives 
using the weighted cost function (3). The memory of the 
particle is updated if it finds better minima. The particles are 
moved in the search space based on equations (28) and (29) 
and these steps are iteratively repeated till convergence occurs 
or the requirements are fulfilled.  
Start PSO Algorithm  

1. Initialize sensor models (mean and covariance matrix), PSO 
parameters 

2. Initialize ‘q’ particles randomly each being the 

solution, 1 2( , .......... )i nX λ λ λ= ; initialize iP to be same.  
3. Cost Evaluation * 

For each particle;  
a. Evaluate

1
( ,....... )

nFA FAP P and 
1

( ,..... )
nM MP P  using 

(11) and (13) 
b. Obtain the optimal fusion rule using (27) 
c. Obtain the error probabilities using (24) and (25) 
d. Calculate the Bayesian cost for the particle given by (3), 

and call it Eq 
End 

4. Determine the best performing particle, ‘g’, gP  

5. Main Loop 
For t= 1 to the max. bound of the number on iterations, 

For i=1 to the population size 
For d=1 to the problem dimensionality,  

Apply the velocity update equation:       
( 1)  t

idV + = ( ) ( ) ( )
1

( ) ( )
2

[0,1] ( )

[0,1] ( )

t t t
id id id

t t
gd id

V U p x

U p x

ω ψ
ψ

× + × × − +

× × −

 .         

where,  Pi is the best position visited so far by Xi, 
Pg is the best position visited so far by any particle 

Update Position:   
)1()()1( ++ += t

id
t

id
t

id VXX  

End- for-d;  
            Compute cost for each particle using Step 3.  

  If needed, update historical information regarding Pi and 
Pg; 
End-for-i; 
Terminate if Pg meets problem requirements; 

End-for-t;  
End PSO 
 
Figure 1: Pseudo Code for the Algorithm determining the optimal thresholds 
using PSO 
20 particles are used for simulation. The parameter values 

used are 
1 2 1ψ ψ= = , 0.8ω =  

PSO is a bottoms up approach. The algorithm starts out 
with a few solutions randomly initialized in the search space. 
The objective function value for each particle is then 
calculated and these values are used to move the solutions in 
the search space.  

IV. RESULTS ON GAUSSIAN EXAMPLES  

Sensors are modeled using Gaussian distributions under 
both the hypothesis. The sensor models used in this paper are 
given in Table 3. The covariance matrix is constructed using 
(33). The swarm optimization based algorithm is run on two 
types of correlation structures. The first one is symmetric 
correlation. In symmetric correlation, the same correlation is 
assumed under both the hypothesis. In the second set of 
experiments, a different correlation is assumed under both 
hypotheses. The correlation used in this paper under the 
hypotheses and between different sensors is given in Table 4. 
Note, that LRT for the sensor models presented in this paper is 
quadratic, requiring two thresholds. The PSO however, 
designs the solution with single threshold. 

Let us consider a multivariate Gaussian density function 
under both the hypotheses given by  

               

[ ]

[ ]

1 2

1 1/ 2

, ,.... 1 2 / 2

1

| |
( , ... | )

(2 )

exp
2

n

X
X X X n h N

t

X

C
f x x x H

x X C x X

π

−

−

=

� ��  � − −� �� � � �−� �
� �� �

           (30) 

where, [ ]XC is the covariance matrix and x X� −� � is the 

matrix where each variables mean is subtracted from the value 
at which the density is to be found. These multivariate 
Gaussian distributions with the means [ ]Xµ  and covariance 

matrix [ ]XC  are assumed to be known under both the 

hypotheses. The joint probability estimates under both 
hypotheses can be evaluated using (20) for a given local 
decision vector defined by U.  However, estimation of the 
joint probability functions needs the calculation of the 
cumulative density function for the multivariate normal as in    

         
( )1 2

1
, .... | ( | )

( 1, | )

n

n h j j h
U j

j h

E u u u H u P u H

P u j H
=

� = × =� ∏� �� �
= ∀

         (31) 

Equation (31) needs the evaluation of multivariate normal 
integral defined by  

   
1 2

1 2

, ,.... 1 2 1 2([ ]) ....... ( .... | ) ...
n

n

X X X n h n
t t t

F t f x x x H dx dx dx
∞ ∞ ∞

= 	 	 	   (32) 

While closed form solutions exist for specific conditions 
imposed on the mean, covariance structure [17] and the 
threshold vector [t], the integral can only be calculated 
numerically. For most of the detection problems, these 
conditions on mean and covariance matrix do not hold true. If 
conditions are applied over the threshold vector as in [15], the 
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purpose of optimization is defeated. Hence, we resort to 
numerical integration of the above integral.  
For numerical integration of the above integral, we use the 
method proposed by Alan Genz [16]. For a positive 
semi-definite covariance matrix, a series of transformations 
lead to a simplified algorithm for evaluation of this integral. 
More details can be found in [16]. Genz developed the method 
for zero mean, normal variables. After a simple linear 
transformation of our problem, it can be handled by the same 
integration procedure.  

We solve the problem for the 2 sensors problem in this 
paper. Similarly the problem can be solved for N sensors 
applying the above procedure and (20). The means, standard 
deviation and the correlation coefficients to generate the 
covariance matrix for the two-sensor case are given in the 
appendix section of this paper. PSO is used to generate the 
optimal fusion rule and the optimal thresholds.  

A. Asymmetric Correlation  
Table 2 presents results for the three strategies for asymmetric 
correlation. The correlations under both hypotheses are given 
in Table 4. The results in Table 2 are for 2-sensor suite. The 
correlation under H0 is 0.76 and under H1 is 0.0185. The 
results achieved for a few a priors are presented. Equal costs 
are assumed for both the errors.  For the sake of brevity, the 
results are presented for only a few samples of the prior 
probability.  
The Bayesian cost values for the three different strategies are 
given. First, CVR is applied assuming that sensors are not 
correlated. However, the fused error probabilities consider the 
underlying correlation. Then MKR for correlation is applied. 
This incorporates the additional processing in (27).  In both 
strategies the thresholds of sensors are first found using LRT. 
Finally, PSO is applied to achieve the optimal thresholds.  
For Gaussian examples, the optimal fusion rule (MKR) for 
correlated sensors achieves better performance than the 
standard CVR. This is expected as CVR assumes 
independence, erroneously. Additional benefits are achieved 
by using PSO based optimization, which also does not assume 
independence, and uses (24) and (25) to evaluate its fitness.  
The performance benefits are nearly 6% over the traditional 
MKR rule, which is the traditional decision fusion approach 
for correlation. Note that the performance benefits will vary 
based on the underlying correlation. However, in this paper a 
very high correlation of 0.76 is assumed under H1.  For higher 
H0 a priori, the performance benefits significantly decline due 
to higher correlation between both the sensors under H0. 
However, PSO still achieves a performance benefit of 4.7% 
over the MKR. 

TABLE 2 RESULTS ON GAUSSIAN EXAMPLES 
P0  CVR 

 
MKR PSO 

Based  
%   Impr.     
2 vs. 1 

% Impr. 3 
vs. 2 

0.2 0.01817 0.0040 0.00372 77.72% 8.019% 
0.4 0.0308 0.0062 0.00581 79.70% 7.198% 
0.5 0.03583 0.007 0.00652 80.46% 6.838% 
0.6 0.03974 0.0074 0.00699 81.17% 6.480% 

0.8 0.2267 0.0073 0.00697 96.74% 5.53% 
0.9 0.1229 0.0063 0.00603 94.84 4.713% 

 

B. Symmetric Correlation 
Figure 2 gives the results for a 2-sensor case. Equal costs are 
assumed for both the errors. Equal a priori probabilities are 
assumed. The Bayesian cost is then called probability of error. 
The PSO based optimization scheme is compared with two 
traditional fusion strategies. In both the traditional fusion 
strategies, the local decision rule is set using LRT. In the first 
strategy, CVR is used to arrive at the optimal fusion rule. In 
the second strategy, MKR is used. MKR performs 
significantly better than CVR as expected. The PSO based 
design performs significantly better across a wide range of 
correlation values. However at higher values of correlation, 
PSO based optimization performs only slightly better than 
MKR. The error value increases as correlation increases. 
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Figure 2: Probability of error for a 2 Sensor Network Using Different 

Strategies 

 

Figure 3: Plot of threshold for Sensor 2 as determined by PSO for varied 
degrees of correlation 
Figure 3 and 4 show the variation of the threshold as set by the 
PSO algorithm to achieve optimum performance. The optimal 
fusion rule across different correlation was found to be AND 
rule.  
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Figure 4: Plot of threshold for Sensor 1 as determined by PSO for varied 
degrees of correlation 

V. CONCLUSIONS 

In this paper we presented a particle swarm optimization 
based algorithm to design distributed detection systems with 
correlated heterogeneous sensors. The estimation of the error 
probabilities using Bahadur-Lazarfeld expansion is adopted. 
The evaluation of multivariate integral is done numerically. 
We compared the algorithm with traditional decision fusion 
strategy, i.e., MKR. We also compared the two strategies with 
the CVR, which assumes independence in identifying the 
optimal fusion rule. The MKR based optimal fusion performs 
better than CVR. PSO based optimization achieved 
significantly better performance as a function of correlation 
between the sensors and a priori of hypotheses. The testing of 
performance of PSO against other traditional optimization 
strategies as in PBPO is part of the future work. The results 
presented in this paper demonstrate PSO as a strong 
computational paradigm to optimize the distributed detection 
network in presence of correlation.  
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APPENDIX 

A. Sensor Suite used in this paper 
The mean and standard deviations of the sensors/classifiers 

used in this paper are given here. The covariance matrix is 
constructed based on the correlation coefficients assumed 
which are also given. Table III gives the means and the 
standard deviations under hypothesis H0 and HI  

 
TABLE 3  MEAN AND STANDARD DEVIATIONS OF SENSORS USED IN THIS PAPER 

Hypothesis/ 
Paremeter  

0H / 

0µ  
0H / 

0σ  
1H / 

1µ  
1H / 

1σ  
Sensor 1 47.375 43.864 144.514 12.843 
Sensor 2 67.755 52.633 251.209 23.008 
Sensor 3 50.417 26.206 167.464 10.189 
 
The correlation coefficients under each hypothesis are 
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given for all the possible pairs of sensors and are given as 
12

hρ , 13
hρ , 23

hρ . The covariance matrix is given by,  
1 2 1 2 12 1 3 13

2 1 12 2 2 2 3 23

3 1 13 3 2 23 3 2

( )                    ( )( )          ( )( )

 ( )( )             ( )                 ( )( )  

( )( )       ( )( )                ( )     

h h h h h h h

h
h h h h h h h

h h h h h h h

σ σ σ ρ σ σ ρ
σ σ ρ σ σ σ ρ
σ σ ρ σ σ ρ σ

� 
� �

=� � �
� �
� �

(33) 

The correlation coefficients used in this paper under both 
the hypothesis are given in Table IV.  

 
TABLE 4: CORRELATION COEFFICIENTS UNDER BOTH THE HYPOTHESIS FOR 

ASYMMETRIC CASE 
Hypothesis  0h =  1h =  

 
12

hρ  0.76036 0.0185 
13

hρ  0.52982 0.8214 
23

hρ  0.60286 0.4102 
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