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Abstract One of the key elements in protein structure prediction is the abil-
ity to distinguish between good and bad candidate structures. This distinction
is made by estimation of the structure energy. The energy function used in the
best state-of-the-art automatic predictors competing in the most recent CASP
(Critical Assessment of Techniques for Protein Structure Prediction) experi-
ment is defined as a weighted sum of a set of energy terms designed by experts.
We hypothesised that combining these terms more freely will improve the pre-
diction quality. To test this hypothesis, we designed a genetic programming
algorithm to evolve the protein energy function. We compared the predictive
power of the best evolved function and a linear combination of energy terms
featuring weights optimised by the Nelder-Mead algorithm. The GP based
optimisation outperformed the optimised linear function. We have made the
data used in our experiments publicly available in order to encourage others to
further investigate this challenging problem by using GP and other methods,
and to attempt to improve on the results presented here.
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1 Introduction

Proteins are polymers, linear chains made of series of 20 different amino acids
encoded in the genetic material (DNA or RNA sequence). Each amino acid
includes an α−carbon (Cα) with bonds to amino (NH) and carboxyl (COOH)
groups and a variable side chain (different for each type of amino acid). The
amino acids in the protein chain are connected with a peptide bonds (CO-NH)
formed between the amino and carboxyl groups, as shown at the top of Fig-
ure 1. The linked carbon, oxygen and nitrogen atoms form a protein backbone.
This backbone forms several repeating local structures such as alpha helices,
beta sheets or loops, known as secondary structure elements (see Figure 1).
These elements and their spatial interrelations define the tertiary structure of
a protein (a fold). A protein, under physiological conditions, spontaneously
folds into a specific shape known as its native state.

The prediction of the tertiary structure of a protein in its native state is one
of the greatest challenges in the field of structural bioinformatics. This field
was launched in earnest over thirty years ago with the Nobel prize winning
experiment of Christian Anfinsen [1]. He found proteins to always form the
same native structures and concluded that a “folding algorithm” has to exist
that uses only information contained in the protein sequence. To explain this
phenomena Anfinsen assumed that a protein in its native state has a minimum
free energy and described the process of folding as a minimisation of this
energy. His explanation became later known as the thermodynamic hypothesis.

1.1 The state of the art methods in protein structure prediction

Since Anfinsen’s refolding experiment it is widely believed that the native
state corresponds to the thermodynamic equilibrium. Thus, ab initio predic-
tion methods, which cannot rely on sequence similarity to known structures,
use a concept of a free energy to find the (near) native state of a protein. This
energy is defined from physical “first” principles as a function of structure and
a structural model minimising it is searched for [6].

To represent the forces affecting protein molecules, several empirical force
fields have been designed such as AMBER99, CHARMM22 or OLPS-AA
[33]. Since the computational cost of these all-atom energy functions is very
high, their practical applicability is limited to massively distributed projects
like Folding@home (using 10 000 CPU days for 10µs of simulation) [36] or
Rosetta@home (using 500 000 CPU hours per protein domain 1) [14]. To re-
duce this heavy computational cost, several simplified models of proteins have
been proposed such as SICHO [25], UNRES [31], CABS [24] or CAS [52]. In
these models, groups of atoms are usually represented by a single group cen-
troid resulting in a more coarse representation of a protein and lower processing
times.

1 Protein domain is a independent part of a protein chain that folds into distinct structural
region. Its average size is around 100 amino acids in length. [45]
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Fig. 1 The atomic structure of a single amino acid and the chain of amino acids is shown
on top of a protein sequence. An all-atom representation of the protein colored by atom
type, cartoon representation of secondary structure elements and a simplified representation
illustrating the protein backbone colored by secondary structure is shown below.

The simplified models also use the notion of protein energy differently,
to compensate for the loss of detail. In these models, the energy function
incorporates knowledge-based potentials derived from a statistical analysis of
the regularities seen in protein structures, as they actually occur in nature.
This function does not capture the physical free energy explicitly. Instead, it
represents the probability that a given structure is native-like.

The knowledge captured in potential terms is then algebraically combined
into a single objective function. The weighted sum is used and the weights
are selected through an optimisation process. To optimise these weights, a
set of candidate protein structures, so called decoys, is generated by applying
small random changes to a known native structure. For the decoys that are
most similar to the native, the values of the energy function are expected
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to be the lowest. Therefore, the optimisation objective is a maximisation of
the correlation between the energy function and the similarity to the native
structure. Similarity is usually measured by calculating the root mean square
deviation (RMSD) between a decoy and the native structure.

This procedure is used in the two most successful prediction methods in
the “template-free” category of the CASP7 experiment [10][48][4]: Robetta [37]
and I-TASSER [46]. Robetta used a training set of 21 proteins (30 000 decoys
each) and linear regression optimisation against RMSD [39]. I-TASSER used
30 proteins (60 000 decoys each) and maximised complex objective function
with correlation to RMSD as its main element [51]. Both prediction meth-
ods are able to distinguish between native-like (RMSD value < 0.4nm) and
non-native decoys (RMSD value > 0.8nm). However, the actual correlation
coefficient between the energy and similarity is not too high, eg. Zhang et al.
[51] report it to be 0.54 for the naive sum of terms and 0.65 for the opti-
mised weighted sum. This means that the energy function does not reflect the
similarity very well and might be unable to distinguish between two similar
models.

1.2 Evolving the energy function

The application of evolutionary algorithms (EA) to protein structure predic-
tion is not new. Many methods have been studied in the past [43] using a
variety of protein structure and energy models, ranging from a very simple
H–P lattice model [16] in works of Krasnogor et al. [29][28] and Santana et
al. [38] to all-atom force fields such as CHARMM used by Day et al. [15]
and Cutello et al. [13] or AMBER used by Djurdjevic et al. [17]. All these
methods, however, use the EA framework to optimise the model of protein
structure with respect to a fixed, i.e. given, energy function. In our work, we
focus instead on the improvement of the energy function itself.

We do this, because even the optimal model would be as good as the
guidance of the energy functions used to optimise it. And as our analysis of
the most successful prediction methods (I-TASSER and Robetta) suggests,
the guidance of the energy function is far from perfect, as it is not highly
correlated with similarity to the native, and thus it might be improved.

The aim of this paper is twofold: firstly, to test the hypothesis that a more
general functional combination of energy terms will result in higher correla-
tion between the energy function and the similarity of the candidate protein
structures to the true native structure; and, secondly, to increase awareness of
this challenging problem in order to encourage other researchers to attempt
to further improve our results using GP or other optimisation methods.

To test our hypothesis we conducted a large number of experiments ap-
plying genetic programming to evolve the energy function used to evaluate
protein structures. As a test set we used real decoys generated by I-TASSER
predictor during the structure optimisation process [46]. We believe that this
is more accurate than using decoys generated by randomisation of the native
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structure (as in the original work of Zhang et al. [51]), because in practise, pre-
dictors have no a priori knowledge of the native structure. We have selected
a subset of eight energy terms used by I-TASSER and pre-calculated their
values for all decoys. Experiments were then carried out to evolve non-linear
energy functions featuring a range of basic algebraic operators and transcen-
dental functions. Using several different fitness measures we tried to determine
how difficult it is to evolve an energy function that is highly correlated with
structural similarity to the native state. As a baseline control experiment,
we compared the best evolved energy functions with a linear combination of
energy terms where weights were optimised using the Nelder-Mead downhill
simplex method.

We hope that this paper will also encourage the GP community to engage
in research aimed at evolving better energy functions. This is without doubts
a very challenging problem for which even a modest advances could have great
repercussions. To facilitate the adoption of this challenge all data used in our
experiments are available online with detailed annotations (see Section 2.2).

2 Methods

2.1 Energy terms

We have implemented eight I-TASSER energy terms. These include: three
short-range potentials between Cα atoms E13, E14 and E15, long-range pair-
wise potential between side chain centres of mass Epair, environment profile
potential Eenv, local stiffness potential Estiff and electrostatic interactions
potential Eelectro as described in [51][52] and the hydrogen bonds potential
EHB as defined in supplementary materials to [49].

The three Ei,i+n energy terms represent Cα − Cα interactions of the i-th
residue with its n-th next neighbour. Each term measures the correlation of
the local structure with the distribution of structural features extracted from
the known structures (i.e. the negative logarithm of the frequency histogram
derived from PDB database [5]). It depends on the amino acid type, predicted
secondary structure and the distance between Cα atoms.

Stiffness potential Estiff represents structural tendency towards a forma-
tion of the predicted secondary structure:

Estiff =
∑
i

(
−λv̂i · v̂i+4 − λ

∣∣∣b̂i · b̂i+2

∣∣∣− λΘ1(i) +Θ2(i) +Θ3(i)
)

(1)

v̂i is a normalized (unit) vector between two consecutive carbon atoms Cα,i
and Cα,i+1. b̂i is a unit bisector of the angle between v̂i−1 and v̂i (see Figure 2).
λ is a stiffness factor that differs for residues inside or outside of the protein
radius of gyration (i.e. mean square distance from the center of mass). Three Θ
functions represent structural bias in favour of predicted secondary structures
and penalise irregularities.
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Fig. 2 Backbone vectors orientation.

Due to a lack of exact positions of all atoms in the CAS model (it uses only
position of Cα atom and the side chain geometrical center of mass), hydrogen
bonds are represented as a Cα packing preference supplemented with statistical
parameters derived from known structures:

EHBij =

λα
(1−|b̂i·b̂j−bα0|)(1−|n̂i·n̂j−nα0|)

(1+||εn̂i−r|−nrα0|)(1+||εn̂j−r|−nrα0|) if i, j in α-helix,

λβ
|n̂i·n̂j |×(b̂i·b̂j)

(1+ 1
2 |εn̂i−r|)(1+ 1

2 |εn̂j−r|) if i, j in β-sheet.
(2)

The location of hydrogen bonds in a specific secondary structure region is
determined based on the contact order and relative orientation of v̂i, v̂i−1 and
v̂j , v̂j−1 backbone vectors. n̂i is a unit normal vector perpendicular to the
plane containing v̂i and b̂i (ni = b̂i× v̂i). λα/β is set to 1 if secondary structure
prediction for residues i and j is the same (both α-helix or both β-sheet) and
to 0.5 otherwise. epsilon is equal to 5Å for α-helix and to 4.6Å for β-sheet.
Parameters bα0, nα0, nrα0 are based on statistics derived from a set of 50
α-proteins and 50 β-proteins.

Long-range interactions are calculated between the side chain centers of
mass. The potential is represented here by a hard-core sphere of excluded
volume interactions and a soft-core 1/r type potential outside the sphere:

Epair =
∑
j>i

Eij(sij) (3)

Eij is set to 0 outside the soft-core (sij > Rmaxij ), to 4 inside the hard-core
(sij < Rminij ) or to statistical pairwise potential eij if between.

Electrostatic effects are included using a form of Debye-Hückel equation:

Eelectro =
∑
j>i

exp(−ksij)
sij

(4)

k is the inverse Deybe length, where 1
k ∼ 15Å was experimentally chosen by

Zhang et al.
Potential describing the contact environment is based on bonds geometry

and is derived from the set of PDB structures:

Eenv =
∑
i

Vi (5)
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Vi represents amino acid specific potential and depends on number of residues
that are in contact with the ith residue for which their bisectors are parallel
(b̂i · b̂j > 0.5), anti-parallel (b̂i · b̂j < −0.5) or perpendicular (dot product in
[−0.5, 0.5] range). Residues are considered to be in contact if sij < Rminij .

We left out potentials using data from the threading process (e.g. distance
map or contact order) and the hydrophobic potential introduced in [46] using
neural network [9] as they depend on external feature predictors which were
not available for local use at the time of writing this paper and would have
made pre-calculation much slower (see Section 5).

2.2 Construction of the ranking

In our optimisation experiments we have used 54 small non-homologues protein
chains used by Zhang et. al [46] 2. From the set of decoys generated by I-
TASSER during the Monte Carlo based structure optimisation process [50]
(available online [46]) we have taken a 10% sample (one decoy every 10 I-
TASSER iterations) to eliminate highly similar decoys. This resulted in a
training set of 1250–2000 decoys per protein. For each decoy we have pre-
calculated the values of energy terms described in Section 2.1.

For each protein we have measured the similarity between the generated
decoys and the known native structure. As a measure we used the root mean
square deviation (RMSD) between 3D coordinates of Cα atoms of two struc-
tures minimised with respect to the rotation using Kabsch algorithm [22][11].
We decided to use RMSD despite its known problems with accuracy [12][44][47]
mainly for the sake of comparison to the previous work.

To compensate for the inaccuracies of the RMSD as a similarity mea-
sure, we decided not to take into account the absolute value of the similar-
ity, but just the relative rank. For given decoys A and B we decide only if
RMSD(A,native) < RMSD(B,native) and we ignore the scale of absolute
difference in the distance to a native δ = RMSD(A,native)−RMSD(B,native).
By doing this, we also simplify the optimisation objective, as linear hierarchy
is easier to reflect in energy function than exact distances between all pairs of
decoys.

For each protein we sorted all decoys in increasing order of the original
I-TASSER energy to obtain the initial ranking R0 (see Figure 3). That is,
decoys with low ranks (near the begining of the ranking) have lower energy,
while those with high ranks have higher energy. Based on R0 we created two
variants of the final ranking R1 and R2. Ranking R1 was constructed by sorting
R0 by RMSD (in ascending order). In case of a tie, the rank from R0 was used
as a second sorting criterion. Effectively R1 is a permutation of R0. R2 in
contrast, is a list of ranks assigned to each element of R0 according to its
position in R1. The ranks in R2 were averaged in case of a RMSD tie. A tie
between decoys was called when RMSD values were the same up to the first

2 From the original set of 56 protein we have excluded 1ogwA (it contains LEF - a non-
standard amino acid) and 1cy5A (by omission)
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two decimal places. This gave us a precision of a 1 picometer (for reference,
the radius of hydrogen atom is 25 pm).

To ensure reproducibility and to encourage other researchers to work on
this challenging problem, we made all data used in GP optimisation, i.e. energy
terms and RMSD distance to native for each decoy, available at: http://www.
infobiotics.org/gpchallenge/.

R0

RMSD

0

3.2

1

2.1

2

5.2

3

1.2

4

3.5

5

2.1

6

4.8

7

3.5

R1 3 1 5 0 4 7 6 2

R2 3.0 1.5 7.0 0.0 4.5 1.5 6.0 4.5

Fig. 3 The figure shows the two approaches we used to construct the ranking. R0 is the
initial ranking where decoys are sorted by the original I-TASSER energy (leftmost decoy has
the lowest energy). R1 is a permutation of R0 where decoys are sorted by RMSD (leftmost
decoy is most similar to a native structure) and a decoy index from R0 is used to break ties
(e.g. decoys 1 and 5 share the same RMSD value but as 1 < 5, decoy 1 precedes 5 in R1).
R2 is a list of ranks based on the order of decoys in R1 (e.g. decoy 0 is in position 3 in R1,
so R2[0] = 3). In case of RMSD ties the ranks in R2 are averaged (e.g. decoys 1 and 5 have
the same RMSD values, therefore they share the average rank of 1+2

2
= 1.5).

2.3 Genetic programming experiment

We used a set of 16 terminals and 8 operators. Half of the terminals were the
energy terms T1–T8 described in Section 2.1 (see Table 3 for the mapping to
I-TASSER terms), half were ephemeral random constants in range [-1,1]. Half
of the operators were binary (addition, subtraction, multiplication, division),
half were unary (sine, cosine, exponential function, natural logarithm). We did
not impose any selection bias towards any of the primitives.

The key element of our evolutionary mechanism is the objective function
used to calculate the fitness of the candidate energy functions in the popu-
lation. For each protein the objective function was used to rank the decoys
using the evolved energy function. Then this ranking was compared to the ref-
erence ranking (obtained in preprocessing stage) and the normalised distance
between the two was averaged for all proteins in the training set, producing
the total fitness.

We used several different methods to calculate the distance between rank-
ings:

http://www.infobiotics.org/gpchallenge/
http://www.infobiotics.org/gpchallenge/
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– Levenshtein edit distance [30], a popular string metric where distance is
given by the minimum number of operations (insertion, deletion or substi-
tution of a character) needed to transform one string into the other,

– Spearman footrule distance [18], the sum of differences between the ranks
of elements,

– Kendall tau distance [23], the number of inversions between two permuta-
tions also known as the bubble-sort distance.

For the Spearman distance we have applied an additional weighting mech-
anism to promote correct order at the beginning of the ranking (more native-
like) and to be more forgiving for differences in the order at the end (less
native-like). We used two weighting functions:

– linear function decreasing from 1 to 0 along the position in the ranking,

w(i) = 1− i/N , for 0 ≤ i < N (6)

– sigmoid function with inflection point (weight 0.5) at 25% of the ranking
length.

w(i) =
1

1 + exp( i−0.25N
scale∗N )

, where scale =

{
0.25N
width if i < 0.25N
0.75N
width if i ≥ 0.25N

(7)

Additional experiments were performed with the reduced data sets. In-
stead of using all decoys for each protein, we used a small sample of decoys.
We have used two sampling methods: simple selection of k decoys and noise
filtering. The first method was used with k = 100 in three variants: random
selection, uniform selection (every k/nth decoy), decoys with the lowest orig-
inal I-TASSER energy. The goal of the noise filtering method was to obtain
a uniformly sampled set of decoys for which the original I-TASSER energy is
correlated with similarity. Starting from the decoys most similar to the native,
the set of all decoys was divided into bins. Two variants of bins were used:
equal size bins (same number of decoys) and equal distance bins (same RMSD
range). From each bin a single most similar decoy was selected such as its
original I-TASSER energy value was greater than for the decoy selected from
the previous bin. If none such decoy existed no sample was selected from the
bin. Along arbitrary selected number of bins b = 100 we also used b for which
the average number of samples obtained for all proteins was the greatest. We
found it to be 42 for equal size bins and 58 for equal distance bins.

We have implemented the genetic programming algorithm using the Open
BEAGLE framework [19]. Base GP configuration used in all our experiments
included two replacement strategies: generational and steady-state [42], the
tournament selection [20] and the population size set to 100. Mutation was
done using three different operators: sub-tree replacement with a random tree,
sub-tree swap or tree shrink where a tree node is replaced by one of its child
nodes. Table 1 shows the probabilities of all evolutionary operators used in
our experiments. This configuration is derived from an initial exploratory trial
(not reported here).
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operation operator probability

crossover non-leaf crossover point 0.70
leaf crossover point 0.10

mutation sub-tree replacement 0.05
tree shrink 0.05
sub-tree swap 0.05

reproduction copy without modification 0.05

Table 1 Summary of the evolutionary probabilities used in all experiments.

We have run our experiments in three rounds changing the factors of the
next round based on the results of the previous one. As a result, the first two
rounds are of an exploratory nature, while the third round is more aggressive
towards increasing the correlation. Configuration of all rounds is shown in
Table 2.

In the first round we used Levenshtein, Kendall and non-weighted Spear-
man distances. In the second round the ineffective Levenshtein distance was
rejected and the linear and sigmoid weighting was added to the Spearman dis-
tance. To have more selection pressure we changed the tournament size from
2 in previous round to 4, 6 and 8. In the third round we used only sigmoid
weighted Spearman’s distance together with the list of ranks R2 instead of
permutational ranking R1 used in both previous rounds. The tournament size
has been set to 8 for generational and 6 for steady-state replacement. Both
these strategies were used alone, with strong 5-elitism or with automatically
defined functions (ADF) operators [27]. The set of all decoys was extended
with 5 reduced sets and the number of generations was increased to 2000 from
1000 used in previous rounds.

Round I Round II Round III
(6) (18) (36)

measure Kendall Kendall Spearman sigmoid
of distance Spearman Spearman linear

Levenshtein Spearman sigmoid

replacement steady-state steady-state steady-state generational
strategy generational generational +elitism +elitism

+ADF +ADF

tournament size 2 4, 6, 8 6 8

generations 1000 1000 2000

ranking type R1 R1 R2

decoy sets all all all, top, random, uniform,
equal size, equal distance

Table 2 Configuration of all the three rounds of experiments. The number in brackets is
the number of experiments run in each round.
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In all experimental rounds, a random walk was performed as a baseline
for comparison. At each generation the population was created using the half-
and-half initialization operator [26][32].

In total we have conducted 60 different experiments using over 100 CPU
days to perform 300 GP runs.

3 Results

3.1 I-TASSER energy terms

The average correlation between the original I-TASSER energy and the simi-
larity to the native structure measured by RMSD is shown in Figure 5. Each
panel represents a set of decoys for a single protein and the Pearson correlation
coefficient ρ(x, y) = cov(x,y)

σxσy
is given in brackets. The average correlation coef-

ficient for all proteins was 0.44± 0.23 (second value is a standard deviation).
Interestingly, even the highest correlation coefficient e.g. for 1f05A or 2f3nA
(see the close-up in Figure 4), is not enough to point to the most native-like
structure as we observe a flat cloud in the lowest energy region stretched over
distance of 0.1–0.2nm.

Fig. 4 Scatter plots of I-TASSER energy vs. RMSD. Close-up for two proteins with high
correlation coefficient (given in brackets). Distance is given in nanometers.

The average correlation coefficient for the naive sum of energy terms EN =∑8
i=1 Ti was 0.12±0.16. Coefficients for individual terms are shown in Table 3.

The low values of the ρ2 coefficient could, however, be somewhat misleading as
they are hiding the spread amongst different proteins. The relative standard
deviation for ρ2 ranged from 82% for T2 to 942% for T6.

The correlation between original I-TASSER energy and rank is shown in
Figure 6. It was almost 50% lower than in case of RMSD with the total average
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energy term ρ1 ρ2 σ2 ρE σE

T1 (E13) 0.27 0.03 0.11 0.08 0.15
T2 (E14) 0.56 0.20 0.17 0.38 0.16
T3 (E15) 0.33 0.15 0.15 0.34 0.19
T4 (Estiff ) 0.25 0.24 0.22 0.44 0.24
T5 (EHB) 0.51 -0.16 0.20 -0.36 0.23
T6 (Epair) 0.38 0.01 0.14 0.12 0.13
T7 (Eelectro) 0.27 -0.20 0.23 -0.34 0.26
T8 (Eenv) 0.34 0.04 0.16 0.03 0.15

average 0.36 0.04 0.17 0.09 0.19

Table 3 Both ρ1 and ρ2 represent the average correlation between a single energy term and
the similarity to native structure measured by RMSD. ρ1 is the coefficient originally reported
by Zhang et al. [51] and ρ2 is the coefficient calculated for our implementation of I-TASSER
energy terms on 54 proteins used in our experiment. ρE is the correlation coefficient between
a single energy term and the original I-TASSER energy. σ2 and σE represent the standard
deviation of ρ1 and ρ2 coefficients. In case of the hydrogen bonds potential EHB , ρ1 and
ρ2 cannot be directly compared, as the latter apply to the new implementation of this term
[49].

of 0.25 ± 0.16. The vertical stripes are visible in regions were several decoys
which are equally distant from the native have different energy. Correlation
between the naive sum of energy terms and the rank was also lower with the
average coefficient value of 0.07± 0.16.

3.2 First round of experiments

As could be seen in Figure 8 the average fitness for the Levenshtein distance
oscillated in a tiny range just above zero (the maximum distance). For the
Spearman distance the average fitness improved quickly in the first 50–100
generations and saturated later around 40% of the maximum fitness. The
initial improvement was more rapid in case of the Kendall distance but the
spread of the fitness was very small, covering only 3% range of the maximum
fitness. The best evolved functions were only slightly (1.3% and 5.5% for the
Kendall and Spearman distances respectively) better than the best function
found by the random walk.

To check the statistical significance of the results we have performed the
Kruskal-Wallis one-way analysis of variance to test the null hypothesis that
medians of two average fitness distributions shown in Figure 8 are equal. The
hypothesis was rejected for both 9 vertical (across measures of distance) and 9
horizontal (across configuration) pairwise comparisons at the 99.9% confidence
level (p < 0.001).
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Fig. 5 Scatter plots of I-TASSER energy (vertical axis) vs. RMSD (horizontal axis). Each plot contains all decoys for a single protein. Correlation
for each plot is given in brackets. Distance between ticks on horizontal axis is 0.1nm. A high resolution version of this figure is available at http:

//www.infobiotics.org/gpchallenge/scatter-plots/.

http://www.infobiotics.org/gpchallenge/scatter-plots/
http://www.infobiotics.org/gpchallenge/scatter-plots/
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Fig. 6 Scatter plots of I-TASSER energy (vertical axis) vs. rank (horizontal axis). Each plot contains all decoys for a single protein. Correlation
for each plot is given in brackets. Distance between ticks on horizontal axis is 100 ranks. A high resolution version of this figure is available at
http://www.infobiotics.org/gpchallenge/scatter-plots/.

http://www.infobiotics.org/gpchallenge/scatter-plots/
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3.3 Second round of experiments

The fitness landscape was not changed much by the linear weighting. But for
the sigmoid weights both average and maximum fitness values were over 20%
higher than for the non-weighted Spearman distance as shown in Figure 7.

The evolutionary progress for the best GP configurations with both weighted
Spearman distances continued slowly, in contrast to the early saturation ob-
served in the first round of experiments. Despite that and a greater improve-
ment over the random walk, the maximum fitness values were still in the
0.4–0.5 range.

We did not observe a significant change in the evolutionary process for big-
ger tournaments. As a result, for the next round of experiments we arbitrarily
picked the tournament size 6 for the steady-state replacement and 8 for the
generational one, just by the visual assessment of the fitness vs. generation
plots.

levenshtein kendall spearman spearman-linear spearman-sigmoid
0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.30

0.35

0.40

0.45

0.50

fi
tn
e
ss

Fig. 7 Box plot of the fitness distribution achieved by a random walk for ranking distances
used in first two rounds of experiments. Middle line is the median of the average fitness in
population across all generations. Box size represents the median of the population fitness
standard deviation. Top and bottom whiskers marks maximum and minimum fitness across
all individuals.

3.4 Third round of experiments

Since in this round we used averaged ranks and in consequence the ranking was
not a permutation any more, we did not use the Kendall distance. The fitness
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function based on the sigmoid weighted Spearman distance was used in all
experiments. The addition of ADFs or strong elitism improved the best fitness
in several cases but we did not find any tendency that would be common for
all sets of decoys.

For the set of all decoys, the value of the average and maximum fitness
was around 40% higher compared to the permutational ranking. However, as
shown in Table 4 the evolution process could not improve significantly over the
random walk, despite the fact that the best randomly found energy function
was as simple as f = 0.412/T6. Similar results were obtained for the three sets
of 100 selected decoys: random, uniform and top. For the noise filtered set of
decoys, where the GP trees of the best functions were over two times larger,
the improvement over random walk was greater than 7%.

best fitness best tree size best tree depth

decoys set improvement max avg max avg max avg

all 0.78% 0.714 0.710 380 186.2 18 16.8
uniform-100 0.96% 0.716 0.710 289 151.5 18 17.3
random-100 1.28% 0.720 0.713 289 151.5 18 17.3
top-100 1.93% 0.709 0.701 266 118.7 18 15.5
f-42 7.76% 0.729 0.713 1110 485.0 18 17.7
f-100 7.64% 0.788 0.772 629 414.7 18 17.5
d-58 8.21% 0.809 0.780 752 388.7 18 17.3
d-100 10.88% 0.835 0.804 793 329.2 18 17.5

Table 4 Comparison of the best evolved functions for different sets of decoys. Second
column shows percentage fitness improvement over the random walk. The next columns
show the maximum and the average value of fitness, tree size and tree depth for the best
functions of all six run configurations.

The change in fitness landscape for the noise filtered sets of decoys is shown
in Figure 11. The range of fitness values for the random walk increased up to
40% of the maximum fitness from 15% observed previously for all decoys.
Although the average fitness was lower, the fitness of the best individuals has
improved reaching 0.75 for the set of decoys created using 100 equal distance
bins (d-100).

The overall fittest evolved individual and the greatest evolutionary im-
provement over the random walk was observed again for the d-100 set. The
best evolved energy function had almost 11% greater maximum fitness (0.835)
than f = 0.3433 ∗ T1 + T3− T6 found by chance. However, the GP tree was
difficult to analyse because of a bloat. As we did not introduce any size penalty
in the fitness function, the average size of a GP tree was increasing through
generations as shown in Figure 10.
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Fig. 8 Fitness throughout the generations in first round of experiments. Lines show the average (thick black), minimum (thin grey) and maximum
(thin red) fitness in the population. Filled area around the average represents the standard deviation. Each row corresponds to a single fitness function
and each column corresponds to a single GP configuration.
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Fig. 9 Scatter plots of the best energy function evolved for d-100 set (vertical axis) vs. RMSD (horizontal axis). Red horizontal line marks the
energy of the native structure. Each plot contains all decoys for a single protein. Correlation for each plot is given in brackets. Distance between ticks
on horizontal axis is 0.1nm. A high resolution version of this figure is available at http://www.infobiotics.org/gpchallenge/scatter-plots/.

http://www.infobiotics.org/gpchallenge/scatter-plots/
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Fig. 10 Tree size throughout the generations. Sizes are averaged over all six GP configura-
tions for a selected set of decoys from the third round of experiments. Lines show the average
(thick black), minimum (thin grey) and maximum (thin red) tree size in the population.
Filled area around the average represents standard deviation.

The distribution of the terminals and operators used in the best functions
evolved for each set of decoys is summarised in Table 5. The most frequently
used energy terms were T4 and T5. Interestingly, T4 had the highest correla-
tion to RMSD and T5 the second lowest one (see Table 3). Similarly, the least
frequently used energy terms, T1 and T6, were the ones with the correlation
to RMSD closest to zero. Therefore, the GP optimisation based on the dis-
tance between ranks was able to discover an analogous hierarchy of the energy
terms. Across the operators, the most frequent were addition and division with
transcendental functions (sine, cosine and natural logarithm) being the least
frequent.

decoys set T1 T2 T3 T4 T5 T6 T7 T8 add sub mul div log exp sin cos total

all 0 0 10 18 19 3 10 1 99 2 0 0 8 104 4 4 323
uniform-100 4 0 0 1 2 1 3 4 0 15 1 0 4 21 0 1 59
random-100 1 4 5 3 1 5 14 6 6 1 27 46 12 24 2 4 203
top-100 0 0 0 0 0 3 9 9 0 0 9 61 4 48 64 3 260
f-42 11 49 76 84 26 3 105 19 310 38 25 174 5 8 1 1 1110
f-100 1 42 45 50 48 14 3 33 158 39 65 22 14 32 13 1 629
d-58 26 8 1 40 69 32 21 3 193 34 26 90 4 28 6 27 752
d-100 6 6 12 60 41 17 19 22 52 102 37 78 0 34 0 17 590

Table 5 The distribution of terminals and operators in the best evolved functions for
different sets of decoys. Ephemerals are not shown.

The best energy function evolved for the d-100 set was correlated to RMSD
with the coefficient of 0.76 ± 0.19 and to the rank with coefficient of 0.74 ±
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Fig. 11 Box plot of the fitness distribution achieved by a random walk with sets of decoys
used in the third round of experiments. Middle line is the median of the average fitness in
population across all generations. Box size represents the median of the population fitness
standard deviation. Top and bottom whiskers marks maximum and minimum fitness across
all individuals.

0.18. When the best evolved function was applied to the set of all decoys,
the corresponding correlation coefficients dropped to 0.30 ± 0.18 (shown in
Figure 9) and 0.20 ± 0.17. Still, compared to naive combination of terms the
evolutionary optimisation improved the correlation coefficients 2.5 and 2.85
times respectively.

3.5 Comparison to the linear combination of terms

As we shown before, the best energy function found by our GP algorithm
provide significantly better prediction guidance than the naive combination of
terms or best functions found by the random walk. Moreover, the GP algorithm
was able to automatically discover the most and the least useful energy terms
without having any knowledge how these terms alone are correlated to RMSD.

To put these results in context, we used the Nelder-Mead downhill simplex
method [35][34] to find the best weights of the energy function given as a lin-
ear combination of terms EL =

∑8
i=1 wiTi, similar to what have been done

in the original work by Zhang et al. [51]. We ran the SciPy [21] implementa-
tion of the algorithm using a vector of weights w = [w1, . . . , w8] as a variable
and minimising either the sigmoid weighted Spearman distance or the corre-
lation coefficient between energy and rank directly. The method converged in
a fraction of time allowed for GP optimisation (minutes vs. hours) performing
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on average only about 500 objective function evaluations. Table 6 shows the
maximum objective function values obtained for d-100 and all decoy sets com-
pared with the results of the best evolved functions. The fitness of GP-evolved
functions was in all cases over 10% higher.

spearman-sigmoid correlation

method d-100 all d-100 all

simplex 0.734 0.638 0.650 0.166
GP 0.835 0.714 *0.740 *0.200

Table 6 The results of the simplex method optimisation of the weighted sum of terms
compared to the best GP-evolved functions. Notice that the correlation coefficient for GP
marked with star was calculated after the evolutionary optimisation, while in case of the
downhill simplex method it was directly used as an objective function.

3.6 Population diversity analysis

The mapping between the tree representation of a function and it’s fitness is
very complex as it involves an evaluation of the energy of thousands of decoys
and a comparison of the evolved ordering with a reference ranking for several
proteins. It would not be surprising if this mapping will result in the loss of
diversity between the levels as shown on Figure 12.

genotype
level

phenotype
level

fitness
level

Fig. 12 Illustration of possible mapping between GP trees, decoys ordering created by the
evolved function and the total fitness.

To gain more insight into the evolutionary process and usefulness of the
proposed fitness functions, we have collected a wide range of population diver-
sity statistics for the best configurations from the last round of experiments.
Burke et al. [8][7] have shown that to understand the evolutionary dynamics
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the diversity should be measured on several levels. As suggested there, we
measured the population diversity on three levels:

– genotype, we measured a number of unique trees using a pseudo-isomorphism
measure [7], where each tree is described by a triple <# terminals, # non-
terminals, tree depth>

– phenotype, for each of n individuals in the population we generated decoy
rankings and measured the average root mean square distance between
them (using the Spearman footrule distance), which we then averaged for
all m proteins obtaining phenotype rmsd:

1
m

m∑
p=0

2
n(n− 1)

√√√√ n∑
i=0

n∑
j>i

d(rpi, rpj)2 (8)

– fitness, we measured the entropy in the population based on the frequency
of occurrence of fitness values (using a precision of three decimal places):

n∑
i=0

pi ∗ log(pi), where pi =
1
n
duplicatesi (9)

For individual runs we have observed a rapid loss of the diversity on both
genotype and phenotype levels after a few initial generations. However, it was
not the case for the diversity on the fitness level, which usually did not decrease
even for late generations. Moreover, for the best individual runs the maximum
fitness is not stagnating but slowly improving throughout 2000 generations
(see Figure 13). Hence, the early saturation of the average fitness does not
seem to be related to a converged population.

We have analysed the common diversity characteristics of a group of the
most successful runs and we found the best evolutionary progress to be re-
lated to a gradual decrease of the phenotype diversity and high or increasing
diversity on the fitness level (see runs A and C in Figure 13). Interestingly, a
high diversity on the fitness or phenotype level alone did not result in good
evolutionary progress (see runs D and E in Figure 14). A high diversity on tree
level for late generations seems to indicate cases when evolution was trapped
around a low quality local optima. Additional diversity plots are available at
http://www.infobiotics.org/gpchallenge/diversity/.

http://www.infobiotics.org/gpchallenge/diversity/
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Fig. 13 Maximum fitness throughout generations compared to population diversity on fitness, phenotype and GP tree levels. Each plot shows side
by side five different runs (A-E) for a selected GP configuration.
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Fig. 14 Maximum fitness throughout generations compared to population diversity on fitness, phenotype and GP tree levels. Each plot shows side
by side five different runs (A-E) for a selected GP configuration.
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4 Discussion

In protein structure prediction a useful energy function is the one which guides
the structural optimisation process towards the region of native-like structures.
Therefore, it seems natural to measure this usefulness with a correlation coeffi-
cient between the energy and similarity to native. However, as we have shown,
even a high correlation coefficient (> 0.7) does not guarantee that distinguish-
ing the native-like structure from the others would be easy. This is reflected
in the lower correlation to rank, since ranking ignores the scale. The lack of
power to differentiate between the decoys is best observed on the energy vs.
rank plots, where for several consecutive rank bins the assigned decoys are
within the same energy range.

The difference between the correlation of single energy terms in our ex-
periments and in the original work by Zhang et al. shows the difference in
difficulty of the decoy sets used. It seems to be more difficult to choose a
native-like structure from the set of decoys sampled from the structural op-
timisation process, than from a set generated by randomisation of the native
used by Zhang. The former starts from fragments of other proteins similar to
the target on a sequence level and has no knowledge of its native structure.
The latter is using the native structure directly resulting in a biased set. More-
over, the decoys used in our experiments are often very similar to each other,
whereas Zhang kept them separated by large 0.35nm RMSD distance. As our
results show, decoys generated by the predictor are more difficult to assess and
thus optimising the energy based on the randomised and highly separated set
of decoys might be inadequate as this is not what predictors have to deal with
in practise.

Although the naive combination of energy terms used in our experiments
compared to the original I-TASSER energy was much less correlated to RMSD,
the genetic programming optimisation was able to evolve energy functions
significantly decreasing this gap. Considering the fact that this is only initial
work in which we used a basic set of knowledge-based potentials, the results
are encouraging.

One of the two biggest difficulties in our research was deciding how to
build the ranking of decoys in a way that would lead to learning of the energy
function. The second difficulty was a design of the fitness function that would
result in an easy to search fitness landscape. These are discussed next.

4.1 Decoy ranking

Since in the structural optimisation process it is important to be able to mea-
sure the energy difference even for small structural changes, we decided to
build the ranking with a picometer RMSD precision. Despite the high preci-
sion, we were not able to avoid ties in the ranking. Our initial permutational
approach, in which the tie was decided by the original I-TASSER energy has
been shown less efficient in terms of the fitness distribution than averaging the
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ranks. It is not really surprising, as the I-TASSER energy itself was not highly
correlated with RMSD.

The use of the ranking has been proven to be a good method to avoid
the constraints of the direct comparison. This linear normalisation frees the
evolution process from the need to reflect the scale of similarity or the direct
differences between pairs of decoys.

In experiments with reduced sets of decoys we have shown that a wise
selection of the sample representing the whole set improved the learning. But
evolved functions were not proven useful when applied to the set of all decoys.
Another way of pre-selecting the decoys, that would not depend on the original
I-TASSER energy but rather purely on the decoys similarity might give better
results. The similarity itself might be also measured differently. The RMSD as
a non-weighted average of all Cα–Cα distances is sensitive to local errors and
might return high values of distance even if global topology is correct.

The overall conclusion is that the influence of the parametrisation of the
evolutionary process on the final result was not as important as the choice
of the method to build the ranking. This leads to further work on how the
decoys are ranked by the evaluation operator. Introduction of equal rank bins
based on the distribution of the evolved energy values should possibly make
the rankings comparison more accurate.

4.2 Fitness function

For all fitness functions used in our experiments the average fitness saturated
around the maximum after initial 50–200 generations. Although experiments
with increased number of generations have shown a continuous improvement
even after 2000 generations, the scale of this improvement was very small.

There are several factors that may cause this early saturation. The major
one is a polynomial bound on the possible values of fitness functions. The
maximum distance between two rankings of length n for Levenshtein distance
is n (substitution of all characters). For Spearman and Kendall distance it
is bounded by O(n2) being respectively 1

2n
2 and 1

2n(n − 1) for the reverse
ranking. As a result, many different energy functions have the same value of
the fitness function. This is why for the Levenshtein distance all individuals
had the fitness very close to minimum and why for the Kendall distance the
fitness variety amongst the population was so limited.

The analysis of population diversity for the best configurations has revealed
that higher diversity on the fitness and phenotype level leads to a better evo-
lutionary progress. It might be then useful to design a mechanism similar to
the fitness sharing to promote the population diversity on both these levels.

Another important factor is the use of non-weighted average to calculate
the total fitness. A very low fitness value for a single protein also significantly
lowers the total fitness. To overcome this we may exclude a k outliers from
the total score. It might also be a good idea to use more complex averaging
scheme, for example weighted by the native structures similarity, so that more
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frequent but similar structures in the training set will have lower impact on
the total fitness.

5 Conclusions and future work

In this paper we have proposed the use of genetic programming to evolve novel
forms of energy function for protein structure prediction. We have shown that
this problem is very challenging, mainly due to the need of complex mapping
between a GP tree and the total fitness, large amount of data to process and
the requirement to generalise over different proteins, and that evolving a high
quality energy functions is not an easy task. We have demonstrated a GP
design generating functions that outperform the optimised weighted sum of
terms used in previous works. We believe that this new GP-based approach
might lead to significant improvements in the quality of protein structure
prediction.

However, there is still plenty of scope for improvement and several ques-
tions remain unanswered. Firstly, the definition of the fitness function needs
improvement to better handle the problem of equal ranks and to relax the
polynomial bound on the measure of distance between rankings. Moreover,
additional objectives could be added to the fitness function to evolve energy
functions that are compact and easy to compute.

Secondly, it is not known how the use of protein structure similarity mea-
sures other than RMSD will influence the landscape. It is reasonable to expect
that more reliable measure of structural comparison might make it smoother,
by eliminating some noise. The similarity consensus [3] that is derived from a
set of different similarity measures and combines strengths of the individual
methods might be a much more robust alternative.

We may also extend in future work the currently limited set of energy
terms with data from protein feature predictors such as distance maps, contact
order, contact restraints or solvent accessibility [2][40][41]. Especially the last
one might be meaningful, since the hydrophobic effect is considered to be one
of the main forces in protein folding.

Finally, it is not yet understood how general the evolved functions are or
whether the use of different decoys (either generated by different prediction
methods or for different set of proteins) will increase their ability to select near-
native structures. We hope to address some of these issues in the future work
and to see other researchers contributing to this important area of research.
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