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We describe the development and application of an imaging protocol, which evolves a scanning
probe’s atomic structure in parallel with automated optimization of the scan parameters. Our
protocol coerces the system into a state that produces a specific atomic resolution image type
without human involvement. © 2011 American Institute of Physics. �doi:10.1063/1.3600662�

The automation of experimentation has now progressed
to the point whereby robot scientists are capable of not only
testing hypotheses but, remarkably, of developing the appro-
priate scientific hypothesis in the first place.1 Sophisticated
experimental optimization based on evolutionary strategies
has been demonstrated for a broad range of processes includ-
ing laser pulse shaping,2 control of oscillatory chemical
systems,3 the study of Bose–Einstein condensates,4 and the
scheduling of experiments by a robot scientist.5 Although
evolutionary algorithms6 have been applied to a number of
problems in computational nanoscience,7,8 these algorithmic
strategies have hitherto not been incorporated into what is
arguably the most important tool for experimentation at the
nanoscale: the scanning probe microscope.

Despite recent impressive advances in scanning probe
microscopy �SPM� control at the atomic and molecular
levels,9–12 there remains a central component of the probe
microscope, which not only produces a significant bottleneck
in data collection but, in the vast majority of cases, leads to
an inherent uncertainty in the image formation mechanism.
The component in question is, of course, the probe itself.
Probe microscopists adopt a mixture of experience and ser-
endipity when selecting control parameters that produce tips
capable of atomic/molecular resolution. During the optimiza-
tion of tip and imaging parameters the perceived quality of
the image �or line profiles� is entirely based on operator
experience rather than arising from a well-defined metric �or
set of metrics�.

To address this issue we have developed a machine
learning protocol for the control and optimization of the
structure of a scanning probe used for atomic resolution im-
aging. We demonstrate how the precise state of the probe and
the associated control parameters can be automatically tuned
by the algorithm so as to provide a particular image type.
High quality atomic resolution images are obtained with no
human operator involvement other than installation of the tip
and sample in the microscope at the start of the experiment.

To assess the ability of the system to evolve high quality
images we chose a prototypical tip-sample combination; a
PtIr probe scanning a highly oriented pyrolytic graphite
�HOPG� sample. The surface was prepared by cleaving with
Scotch tape while the 250 �m diameter PtIr wire tip was

simply cut. All scans were carried out in ambient conditions
on a simple entry-level scanning tunnel microscope �STM�
�EasyScan, Nanosurf�. Variation in experimental air tempera-
ture was restricted.

The graphite surface is widely used as a standard test for
the atomic resolution capabilities of an STM. Despite being
studied for decades, however, there remain some open ques-
tions regarding the nature of STM images of the HOPG sur-
face and the process by which those images are obtained.13

As such, the ability to evolve the control parameters and tip
state to give rise to different symmetries of the graphite lat-
tice, i.e., trigonal versus honeycomb, was an important ob-
jective of the evolutionary strategy we adopted.

Before fine tuning the control parameters, the probe is
conditioned at a relatively coarse level, Fig. 1. This initial
stage of the optimization process is entirely deterministic and
subject to simple rules and image analysis metrics. Initially, a
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FIG. 1. �Color online� Selection from a sequence of images �slow scan
direction from top to bottom� of the graphite �HOPG� surface acquired
in the initial “deterministic” phase. Tunnel current=3 nA, sample bias
50 mV, scan rate 0.1 lines/s, 256�256 pixels. After improving the 200
�200 nm2 image by applying a 5 V, 200 ms voltage pulse �off the image
area�, ��a�–�b��, the algorithm zooms in to �c� 20�20 nm2 and �d� 4
�4 nm2.
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large area �200�200 nm2� scan is taken and, following
plane removal, the apparent surface morphology is algorith-
mically ascertained. Poor images are identified by a high
surface roughness, and are classified according to their ap-
pearance using the universal similarity metric �USM�.14

At the end of a poor scan �and dependent on image
class�, voltage pulse�s� are applied and the scan repeated
until the image of the surface becomes atomically flat. If this
is unsuccessful following a number of attempts, the X-Y
scan coordinates are altered to move to a different sample
area. Relatively few of the probes, 9%, fail to get past this
first stage. We are confident that this figure can be improved
upon with other substrate/tip combinations and with opera-
tion under vacuum conditions.

After a flat 200�200 nm2 image is achieved, the sys-
tem incrementally decreases the scan window size. At each
step, the image quality is assessed using a combination of
metrics. For scan sizes �50 nm, the presence of step edges
and surface defects are used to ascertain surface quality. If at
any stage during this “deterministic” phase the acquired im-
age fails to meet the assessment criteria, different probe-
forming routines are employed �e.g., voltage pulsing or high
tunnel current imaging�. If the surface is measured as atomi-
cally flat, the scan size is reduced further, to 20�20 nm2. At
this level, if Fourier analysis reveals structure consistent with
the graphite lattice the scan size is reduced to the final mag-
nification level of 4�4 nm2. Here again the Fourier compo-
nents are ascertained and, as a quantifiable measure of qual-
ity, the scan is cross-correlated with a target image. Once the
correlation value passes a certain predetermined threshold
evolutionary optimization is initiated.

Our evolutionary optimization algorithm, based on a cel-
lular genetic algorithm �cGA�,15 belongs to a subclass of
GAs in which the individual �potential solution� only inherits
characteristics from its closest neighbors during the breeding
cycle.16,17 These overlapped small neighborhoods cause a
slow diffusion of solutions through the population, enhanc-
ing diversity, and exploration while intensification through
genetic operations, takes place inside the neighborhood �con-
centrating genotypes that create fitter individuals�. This type
of structured algorithm is especially well-suited for complex
problems.18 Here we allow the cGA to evolve the imaging
parameters in order to achieve a best match to a target image.
Initially, the first generation is seeded with random values
from the available parameter space �determined from the
physical limits of the system� and assigned to individuals
within the population. A generation can consist of any num-
ber, n, of individuals �typically 25�, In, each having a particu-
lar set of parameters �genotype�, In�i ,V ,GI ,GP�, where i, V,
GI, and GP are the tunnel current setpoint, the sample bias
voltage, integral gain, and proportional gain, respectively. At
the end of the generation, when all the images have been
acquired, each individual image, I, is compared against the
chosen target image and assigned a fitness according to simi-
larity. To aid flexibility the target image is simply input as a
scaled bitmap of the required surface. These “ideal” surfaces
can be from previous cGA runs, from those produced by the
human operator, theoretical representations, or even correctly
scaled images from the literature can be used.

The similarity between target and acquired image for the
cGA phase is assessed by calculating the robust mutual in-
formation �RMI�19 shared between the two images, rather

than via the USM because of the increased efficiency of the
RMI in distinguishing between regular patterns. The higher
the RMI value, the fitter the individual. As the population’s
average fitness increases the mutation rate is slowed—just as
a human operator would reduce the variance in the parameter
space—as the ideal image is honed in on. Figure 2 shows the
evolution of the system toward a higher quality image as a
function of the number of cGA generations.

Crucially, the system has the ability to self-tune and
evolve to different STM images of the same surface. The
selection of a specific image type has particular potential
with regard to elucidating �and exploiting� the contribution
of the probe structure in SPM imaging, enabling, in prin-
ciple, “auto recovery” of a given tip state. Figure 3 shows
examples of the two primary image types observed for STM
imaging of the HOPG surface—the trigonal and honeycomb
lattices. These images were acquired by the system evolving
and optimizing to different predefined targets �Figs. 3�c� and
3�d�� of the expected surface. A key observation is that it is
not just the selection of the parameters themselves that result
in a good image. Instead, both the optimized parameters and
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FIG. 2. �Color online� The average evolution of cGA image quality as a
function of generation. Closed circles show the averaged fitness values,
where the solid line is a Savitzky–Golay smoothing of the data to highlight
the evolution. The trend for increase in fitness is highlighted by a dashed
line �an exponential fit to the data points� that in this case plateaus at an RMI
of 0.12. For comparison, the square markers show the lack of change in
fitness for randomly selected imaging parameters �shaded area �1 standard
deviation�. Inset: 1�1 nm2 �a� the starting image and �b� the evolved
image.
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FIG. 3. �Color online� Genetic algorithm-optimized 4�2 nm2 atomic res-
olution images showing �a� trigonal and �b� honeycomb symmetry for the
graphite surface. The system has tuned itself to the predefined targets shown
in �c� and �d�, respectively. Line profiles �e� and �f� show the characteristic
repeat pattern of carbon atoms for each type of image.
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the history of image optimization, i.e., the path taken in tun-
ing the instrument, are key. Figures 4�a� and 4�b� show that
two different surface structures can be obtained with almost
identical imaging parameters, Fig. 4�c�. This clearly demon-
strates the importance of the tip’s history and the apparent
phenotypic “plasticity,” an area we are currently studying.

Scanning probe imaging of graphite has very recently
received renewed interest13,20 due, in part, to the obvious
relationship between the ability to understand and measure
the HOPG surface and that of graphene. Although an eluci-
dation of the image formation mechanism is outside the
scope of this letter, the ability of the automated system we
have developed to self-tune to a particular image “class” has
obvious potential in the analysis and interpretation of the role
of the tip in STM image generation.

The evolutionary protocol we outline here not only co-
erces an STM to produce high quality atomic resolution im-
ages of a particular type but, because any scanning probe
image involves a convolution of tip and surface structure,
opens up the possibility of intelligently engineering the
atomic architecture of the apex of the probe. We expect that
evolutionary optimization of scanning probes will find appli-
cation in both STM and, significantly, qPlus atomic force
microscopy9,11 �where there is much broader parameter

space�. There is immense scope for the extension of the cGA
approach to more sophisticated machine learning methods,
which can handle not only known surface structures but
those of unknown symmetry and periodicity.
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FIG. 4. �Color online� Different images of the same scanned area during the
cGA phase ��a� and �b��. The three individuals �1–3� in each image �delim-
ited by solid black lines� have close to identical imaging parameters, �c�.
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