

Research Note
RN/12/03

Evolving Human Competitive Spectra-Based Fault Localisation

Techniques

08/05/2012

Shin Yoo

Abstract

Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and
ranking statements according to the predicted risk. Designing a risk evaluation formula is
often an intuitive process done by human software engineer. This paper presents a Genetic
Programming approach for evolving risk assessment formulæ. The empirical evaluation
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations
can consistently outperform many of the human-designed formulæ, such as Tarantula,
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2
(ITE2) structure, or even outperform it against other program structures.

1 The program spectra data used in the paper, as well as the complete empirical results, are available from:
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/12/03

Evolving Human Competitive Spectra-Based Fault Localisation Techniques

June 11, 2012

Shin Yoo

Abstract

Spectra-Based Fault Localisation (SBFL) aims to assist debugging by applying risk evaluation
formulæ (sometimes called suspiciousness metrics) to program spectra and ranking statements
according to the predicted risk. Designing a risk evaluation formula is often an intuitive pro-
cess done by human software engineer. This paper presents a Genetic Programming approach
for evolving risk assessment formulæ. The empirical evaluation using 92 faults from four
Unix utilities produces promising results1. GP-evolved equations can consistently outper-
form many of the human-designed formulæ, such as Tarantula, Ochiai, Jaccard, Ample, and
Wong1/2, up to 6 times. More importantly, they can perform equally as well as Op2, which
was recently proved to be optimal against If-Then-Else-2 (ITE2) structure, or even out-
perform it against other program structures.

1The program spectra data used in the paper, as well as the complete empirical results, are available from: http://www.
cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

1 Introduction

Despite the advances in software testing techniques, faults still prevail in many software systems and debug-
ging remains a hard task. Fault localisation aims to guide the programmer towards the program statement
that contains the fault, using the information observed during test execution.

Spectra-Based Fault Localisation (SBFL) is a class of fault localisation techniques that uses program spec-
tra (i.e., a summary of program’s execution trace) to predict the likelihood of each program statement
containing the fault [1–3]. The key element is what is called a risk evaluation formula, or sometimes a
suspiciousness metric, that converts the program spectra to relative risk value for each statement. SBFL
subsequently ranks program statements according to the relative risk: the programmer can investigate the
source code following the rank order. The intuition is that the faulty statement will be high in the ranking,
reducing the number of statements the programmer has to check.

The performance of a SBFL technique is mostly depends on the risk evaluation formula. The majority
of the existing, widely studied formulæ are either inherited from other fields [4, 5] or designed by human
intuition [1, 6–9]: there is no guarantee that one formula is optimal for all classes of faults. Designing a
risk evaluation formula that performs universally well against all possible combination of various program
structures, test suites, and potential locations of faults remains a difficult task for a human. The only
available methodology is that of trial and error: to design intuitively and evaluate empirically. Recent work
includes efforts to design a risk evaluation formula that can be proven to be optimal, but only with respect
to the case that the fault is contained within a specific program structure [8].

We presents an opposite approach: to evolve risk evaluation formulæ from program spectra directly. Using
program spectra from test executions and known fault locations, we use Genetic Programming (GP) to
evolve risk evaluation formulæ. By choosing non-biased input data, we try to obtain formulæ that are
effective against various program structures. It is true that the evolved formulæ will be only as good as
the input data for the GP. However, compared to proving optimality of risk evaluation formulæ against
all possible program structures, providing common program structures that contain fault is a significantly
easier task. In fact, this bears a strong resonance to the mantra of Search Based Software Engineering
(SBSE) [10], namely:

It is easier to compare solutions and choose the better one than to design a perfect solution
from the scratch.

This paper introduces an evolutionary approach to designing risk evaluation formulæ for SBFL. GP uses
program spectra from four Unix utilities from Software Infrastructure Repository [11] and the location
information of 92 injected faults. The contributions of this paper are as follows:

• The paper presents the first evolutionary approach to generating risk evaluation formulæ for SBFL.
All existing formulæ have been manually designed, often relying only on intuition. The introduced
approach is evaluated with empirical studies, using test spectra data from real world Unix utilities.

• The empirical evaluation shows that GP-generated risk evaluation formulæ can outperform those
designed by human. GP-generated formulæ can outperform some of the widely studied formulæ.
Moreover, GP-generated formulæ can perform equally well or even better than an existing formula
that has been proven to be optimal against a specific program structure. The equal performance pro-
vides evidence that GP can match the human design efforts; the outperformance provides evidence
that GP can produce formulæ that are very effective for structures against no proof of optimality is
currently available.

• All data used for the empirical study in the paper have been made available online to encourage
replication and further research.

RN/12/03 Page 1

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

The rest of the paper is structured as follows. Section 2 introduces the concept of Spectra-Based Fault
Localisation and the role of risk evaluation formulæ. Section 3 explains how we formulate the design of
risk evaluation formulæ using Genetic Programming. Section 4 describes the experimental setup. Sec-
tion 5 presents and analyses the results from the empirical evaluation. Section 6 presents the related work.
Section 7 concludes and discusses future work.

2 Spectra-Based Fault Localisation

2.1 Basic Concept

Fault location aims to reduce the cost of debugging by guiding the process of searching for the location of
the fault in the program. Various techniques rely on different software artefact to aid the developer: delta
debugging [12,13] uses the cause-effect chain between the test input and the failure to guide the developer
to the specific part of test input that causes the failure. Program Dependence Graph (PDG) has been used
to construct a causal inference model for the location of fault [14].

One branch of fault localisation techniques that have attracted a significant amount of interest is Spectra-
Based Fault Localisation (SBFL). Program spectra is a summary of a set of program executions [15]. For
many of the SBFL techniques, we observe the execution of the test suite for SUT. Suppose SUT has n lines,
and the test suite contains m test cases: the program spectrum for SBFL can be described as a matrix of
n rows and 4 columns. Each row corresponds to individual statement of SUT, and contains four counters:
(ep, ef , np, nf). Counter ep and ef represent the number of times the corresponding program statement
has been executed by tests, with pass and fail as a result respectively. Similarly, np and nf represent the
number of times the corresponding program statement has not been executed by tests, with pass and fail
as a result respectively. SBFL techniques subsequently use a risk evaluation formula, which is a formula
based on the four counters, to predict the relative risk of each statement containing the fault. Compared to
the case in which the developer investigates the structural elements in the order from s1 to s9, the ranking
according to Tarantula produces 66.66% reduction in debugging effort (i.e. the developer will encounter s7
6 elements earlier.

Tarantula =

ef
ef+nf

ep
ep+np

+
ef

ef+nf

(1)

Table 1: Motivating Example: the faulty statement s7 achieves the 1st place when ranked according to the
Tarantula risk evaluation formula in Eq 1.

Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

For example, Table 1 illustrates how the Tarantula metric [2], defined in Equation 1, can be applied to a
small exemplar program spectrum. Suppose the structural element s7 contains the fault. The coverage
relationship between structural elements and the given test suite T = {t1, t2, t3} is given in the second
column, with the corresponding test results. The Spectrum column contains the program spectrum data

RN/12/03 Page 2

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

for T ; the column Tarantula contains the resulting risk evaluation metric values. Finally, the column Rank
contains the ranking of structural elements according to the Tarantula metric values. The faulty statement,
s7, is assigned with the highest Tarantula metric value, and therefore ends up in the first place.

2.2 Risk Evaluation formulæ

The effectiveness of a SBFL technique is determined by the risk evaluation formula, such as Equation 1. All
existing formulæ are generated by human [8]. Table 7 contains several of the most widely studied formulæ.
Interestingly, Jaccard [4] and Ochiai [5] were first studied in Botany and Zoology respectively but have
been subsequently studied in the context of fault localisation [3,8]. Tarantula was originally developed as a
visualisation method [1,7] but also increasingly considered as an SBFL risk evaluation formula independent
from visualisation [2,16]. AMPLE [6] and three different versions of Wong metric [9] have been introduced
specifically for fault localisation.

Op1 and Op2 metrics are recent additions to SBFL techniques that showed an interesting research direction:
these metrics are proven to produce optimal ranking, as long as the fault is located in a specific program
structure (two consecutive If-Then-Else blocks, called ITE2) [8]. Although the proof does not guar-
antee that Op1 and Op2 are optimal for all locations of faults (and not just limited to ITE2), the empirical
evaluation showed that both Op1 and Op2 are very strong formulæ.

Table 2: Risk Evaluation formulæ

Name Formula Name Formula

Jaccard [4]
ef

ef+nf+ep Ochiai [5]
ef√

(ef+nf)·(ef+ep)

Tarantula [7]
ef

ef+nf
ep

ep+np
+

ef
ef+nf

AMPLE [6] | ef
ef+nf

− ep
ep+np

|

Wong1 [9] ef Wong2 [9] ef − ep

Wong3 [9] ef − h, where h =


ep if ep ≤ 2

2 + 0.1(ep − 2) if 2 < ep ≤ 10

2.8 + 0.001(ep − 10) if ep > 10

Op1 [8]

{
−1 if nf > 0

np otherwise
Op2 [8] ef − ep

ep+np+1

2.3 Designing Risk Evaluation formulæ

This subsection discusses why Genetic Programming can be an ideal tool for designing risk evaluation
formulæ.

Difficulties in Formal Approaches: Although the optimality proof of Naish et al. [8] presents a complete
approach towards designing a risk evaluation formula, it will require significant human efforts to provide
optimality proofs for a wider range of program structures. Moreover, SBFL can be applied to other testing
criteria such as the existing work in concurrency testing [16], for which the possibility of optimality proof
remains unknown.

Data-driven Iteration: Barring the formal proof of optimality, the most intuitive process of designing a
risk evaluation formula would be an iterative modification of a candidate formula, against as a wide range
of spectra datasets as possible, until its performance reaches an acceptable level. Not only the amount of
data will burden the human designer, but this process also is, in fact, how GP operates, i.e., a data-driven,
systematic trial-and-error.

Providing Insights: The goal of using GP for designing risk evaluation formulæ does not have be to
replace human designs completely. It can actually be a powerful tool that the human software engineer can

RN/12/03 Page 3

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

Table 3: List of GP operators
Operator Node Definition

gp add(a, b) a + b
gp sub(a, b) a - b
gp mul(a, b) ab

gp div(a, b)

{
1 if b = 0
a
b otherwise

gp sqrt(a)
√
|a|

use to explore the design space with, to identify building blocks of better formulæ, and to gain insights into
the specific domain under consideration.

2.4 Research Questions

Based on the discussions in Section 2.3, this paper investigates the performance of GP-designed risk eval-
uation formulæ for structural SBFL.

• RQ1. Effectiveness: How much debugging effort can be reduced by the GP-generated risk evalua-
tion formulæ compare to existing human-designs?

• RQ2. Design Space: How much diversity is observed among the GP-generated formulæ? Does GP
re-discover human-designed formulæ? How much problem does GP-bloat cause?

• RQ3. Insights: Are there design insights we can obtain by analysing the GP-generated formulæ?
Do more complex formulæ perform better? Are certain spectra elements more important than the
others?

RQ1 directly concerns the performance of the GP-evolved risk evaluation formulæ. It will be answered by
performing statistical hypothesis testing to the reduction of debugging effort produced by GP and human
generated formulæ. RQ2 aims to investigate how much diversity can be allowed in the design space. It will
be answered by comparing the GP-generated formulæ, both the whole and its parts, to the existing ones.
Finally, RQ3 is about the design insights we can expect to learn by evolving risk evaluation formulæ using
GP.

3 Genetic Programming for SBFL

3.1 Representation

We use a simple tree-based representation and a set of simple operators on the ground that they can suf-
ficiently represent most of the existing risk evaluation formulæ. Table 3 present the GP operators used in
the paper. Addition, subtraction, and multiplication do not require any treatment, because these operations
cannot result in numerical exceptions. The division operator gp div will return 1 when division by zero
error is expected. Similarly, the square root operator gp sqrt uses the absolute value of the given input.
Avoiding numerical exception this way can be helpful for computation environments without sophisticated
exception handling mechanism, such as GPGPU platforms, without losing too much expressive power. For
terminal symbols, we use the program spectra data {ep, ef , np, nf}, as well as one constant, 1.

3.2 Fitness Function

The aim of risk evaluation formula is not only to assign high risk value to the faulty statement, but also
to ensure that the assigned high risk value results in a high ranking of the faulty statement. That is, the
performance of a risk evaluation formula is measured by the relative position of the faulty statement when
ranked by the formula.

RN/12/03 Page 4

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

In literature, this relative measurement is often referred to as the Expense metric, which is a normalised
ranking of the faulty statement. Given a risk evaluation formula τ , a program P , and a fault b in p, the
Expense metric E is calculated as in Equation 2:

E(τ, p, b) =
Ranking of b according to τ
Number of statements in p

∗ 100 (2)

Expense is an a-posteriori, evaluative metric: it can be calculated only when the faulty statement is known.
Because we are evolving a risk evaluation formula from locations of the known faults, Expense can be used
as a fitness function. To avoid over-fitting to the location of a specific fault, we calculate Expense metric
for a candidate formula using multiple faults from different and take the average as the fitness function. For
a set of n known faults B = {b1, . . . , bn} from corresponding n programs P = {p1, . . . , pn}, the fitness
value of a candidate risk evaluation formula τ is calculated as follows:

fitness(τ,B, P) =
1

n

n∑
i=1

E(τ, pi, bi) (to be minimised) (3)

Depending on the risk evaluation formula, multiple statements may get assigned the same risk evaluation
value and, thereby, tie in the ranking. Because it is not immediately clear what will be the appropriate tie-
breaker for a candidate formula, we do not break ties and assign the most conservative ranking to all tied
statements, which is equal to the sum of the number of the tied statements and the number of statements
ranked before them [17,18]. In the context of the fault localisation, this means that we assume the developer
has to check all of the tied statements to locate the fault.

4 Experimental Setup

4.1 Subjects

Table 4 lists the subject programs whose faults are studied in the paper: flex (a lexical analyzer), grep
(a text-search utility), gzip (a compression utility), and sed (a stream text editor). All four programs
are obtained from Software Infrastructure Repository (SIR) [11] along with their test suites. Statement
coverage information was collected using the GNU profiler, gcov version 4.3.2 on Linux version 2.6.27.
We use the test suites provided by SIR.

Table 4: Subject Programs from SIR
Subject Number of Tests Lines of Code Executable Lines of Code Number of Faults

flex 567 12,407–14,244 3,393–3,965 47
grep 199 12,653–13,363 3,078–3,314 11
gzip 214 6,576– 7,996 1,705–1,993 18
sed 360 8,082–11,990 1,923–2,172 16

SIR provides a total of 219 (both real and seeded) faults across the five versions of the four subject pro-
grams [11]. We exclude 35 of these faults because these faults were unreachable when compiled for the
experimental environment, and additional 92 faults because these are not detected by the chosen test suites.
This leaves 92 faults, the distribution of which are listed in Table 4.

4.2 Implementation & Configuration

We use pyevolve [19] version 0.6 to implement the Genetic Programming. The algorithms was executed
using Python runtime version 2.7.3. The population size is set to 40; the initialisation uses the ramping
method with the maximum tree depth of 4. The stopping criterion is a fixed run of 100 generations. The
GP is configured with a rank selection operator, a single point crossover operator with the rate of 1.0, and
a subtree replacement mutation operator with the rate of 0.08.

RN/12/03 Page 5

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

Table 5: Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold correspond to GP-
results that perform as well as or better than any human-designed formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05
GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96
GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69
GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69
GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

4.3 Evaluation

The Genetic Programming algorithm was repeated 30 times to cater for its stochastic nature. Each indi-
vidual run of the GP uses a random sample of 20 faults out of 92 to evolve a risk evaluation formula; the
remaining 72 faults are reserved for evaluation purposes.

We use Vargha & Delaney’s A-test to compare the Expense metric values of GP-evolved formulæ to those
of existing ones. Vargha & Delaney’s A-test is a non-parametric statistical test for determining stochastic
superiority/inferiority of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from group X has higher/lower value than another single case randomly
taken from group Y . For A(X > Y), the value of A closer to 1 represents a higher probability of X > Y ,
0 a higher probability of X < Y , and 0.5 no effect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with caution. There is no guarantee
that the studied programs and faults are representative of all possible programs and faults and, therefore,
it is not clear whether they are legitimate samples of the entire group. On the other hand, if the cost of
designing risk evaluation formulæ is significantly reduced by the use of GP, the possibility of project-
specific formalæ should not be entirely ruled out.

RN/12/03 Page 6

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

5 Results and Analysis

5.1 Effectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and human-designed formulæ in
Table 72. Each row reports the mean Expense values from 72 faults in corresponding evaluation set. Note
that the evaluation set differs between GP runs, as the training set is sampled randomly to avoid bias.

Rows in bold typefaces represent the GP runs that produced formulæ that performed as well as or better than
all of the human-designed formulæ: this was observed 6 times out of 30 runs. The human-designed formula
that performs the best is Op2; its relative performance confirms the trend observed in the previous work [8].
In 5 runs out of the aforementioned 6 (GP10, GP11, GP13, GP20, and GP26), GP-evolved formulæ always
produce the same ranking, and subsequently the same Expense value, as Op2 and outperforms all other
human-designed formulæ. In GP8, the remaining one run, the GP-evolved formula does not completely
agree with Op2, but the mean Expense value from GP-evolved formula is lower than that from Op2.

The biggest improvement over human-designed formula is found in GP13 between GP and Ochiai: the
expense from GP-evolved formula is less than one sixth of that from Ochiai. In fact, Ochiai, Tarantula,
Wong1, and Wong2 are outperformed by GP in all runs. Based on this observation, we focus our compara-
tive statistical analysis to the better performing formulæ: Op1, Op2, Ample, Jaccard, and Wong3. Table 6
presents the statistical analysis of the comparison between GP-evolved formulæ and the five better per-
forming human-designed formulæ. Column A contains Varghar & Delaney’s A test results, with which we
test whether GP-based Expenses are lower than those based on existing formulæ. Column Count contains
a tuple (x/y/z): x is the number of faults for which GP produces lower Expense than the corresponding
human-designed formula, y is the number of faults for which the Expense values are equal, and finally z is
the number of faults for which GP produces higher Expense3. Combined with the A-test, these numbers
provide a summary of how GP-evolved formulæ compare to existing ones.

The overall trend in Table 6 is that the results from A-test are mostly close to 0.5, suggesting that there
is no overall difference in Expense values produced by GP and other formulæ overall. This confirms the
results in Table 5: GP-evolved formulæ perform as equally well as human-designed formulæ. However,
observing the details in Column Count reveals that there exist faults for which GP outperforms existing
formulæ and vice versa. Figure 1 provides a scatterplot with fault-by-fault comparison between some of
GP-evolved formulæ and other metrics4. GP08 produces lower Expense values for only 3 faults and higher
values for 10, but the mean Expense of GP08 is still lower(Table 5). GP11 performs exactly as well as Op2
(i.e., the rankings are identical). For GP15 and GP27, the story is mixed: GP15 comfortably outperforms
Tarantula, but GP27 produces Expense values significantly higher than those from Jacard for a few faults.

Considering that the aim of our approach is to design a formula that will be repeatedly used, we argue that
it is not unrealistic to apply GP to existing program spectra data repeatedly and choose the best performing
outcome: the cost of multiple GP execution will be amortised over the saved effort in fault localisation.
Therefore, we answer RQ1 positively: GP-evolved risk evaluation formulæ can reduce debugging effort
more effectively than many of human-designed formulæ, sometimes over 6 times. In many cases, GP-
evolved formulæ perform as equally well as the best known formula, Op2. Finally, for some faults, GP-
evolved formulæ can outperform even Op2.

5.2 Design Space

Table 7 contains the GP-evolved formulæ in their refined forms. The original solutions were refined by
removing syntactic bloats (such as nf −nf) and improving readability. Explicit bloats were only observed

2The complete results for individual faults are available from: http://www.cs.ucl.ac.uk/staff/s.yoo/
evolving-sbfl.html.

3Therefore x+ y + z is equal to 72, i.e., the size of the evaluation set.
4Scatterplot comparisons for all GP-evolved formulæ are also available online.

RN/12/03 Page 7

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

Table 6: Vargha & Delaney’s A-test between GP and the better performing formulæ. Rows in bold corre-
spond to GP-results that perform as well as or better than any human-designed formulæ.

ID Op1 Op2 AMPLE Jaccard Wong3
A Count A Count A Count A Count A Count

GP01 0.51 3/63/6 0.50 2/64/6 0.53 25/46/1 0.51 22/47/3 0.50 7/60/5
GP02 0.38 9/16/47 0.35 8/16/48 0.39 22/8/42 0.36 19/10/43 0.39 13/15/44
GP03 0.45 4/52/16 0.42 0/56/16 0.45 21/33/18 0.42 20/33/19 0.44 5/54/13
GP04 0.37 11/9/52 0.34 7/9/56 0.37 16/9/47 0.34 10/9/53 0.37 9/9/54
GP05 0.49 6/53/13 0.47 4/53/15 0.49 19/42/11 0.47 15/41/16 0.50 10/51/11
GP06 0.49 4/48/20 0.47 3/48/21 0.50 6/56/10 0.47 5/48/19 0.48 6/46/20
GP07 0.46 6/38/28 0.44 2/42/28 0.47 19/30/23 0.44 14/31/27 0.46 7/38/27
GP08 0.51 3/59/10 0.50 3/59/10 0.54 25/47/0 0.51 26/46/0 0.52 9/54/9
GP09 0.50 6/51/15 0.48 2/55/15 0.50 17/43/12 0.48 17/42/13 0.50 4/53/15
GP10 0.52 4/67/1 0.50 0/71/1 0.53 23/45/4 0.50 24/44/4 0.51 8/63/1

GP11 0.52 4/68/0 0.50 0/72/0 0.53 24/45/3 0.50 23/46/3 0.52 5/67/0
GP12 0.48 2/53/17 0.47 2/53/17 0.50 19/46/7 0.48 19/45/8 0.49 2/55/15
GP13 0.51 3/69/0 0.50 0/72/0 0.52 23/47/2 0.50 22/48/2 0.50 6/66/0
GP14 0.50 2/59/11 0.49 2/59/11 0.52 20/49/3 0.49 18/49/5 0.50 5/56/11
GP15 0.51 3/63/6 0.50 3/63/6 0.51 21/48/3 0.50 21/48/3 0.52 10/56/6
GP16 0.50 2/58/12 0.49 2/58/12 0.53 22/47/3 0.50 17/50/5 0.52 10/53/9
GP17 0.48 5/50/17 0.45 1/53/18 0.49 22/33/17 0.46 18/35/19 0.48 8/49/15
GP18 0.50 4/61/7 0.48 0/65/7 0.50 21/42/9 0.48 20/43/9 0.50 2/64/6
GP19 0.50 4/49/19 0.49 3/49/20 0.52 20/46/6 0.50 16/46/10 0.51 8/49/15
GP20 0.52 4/68/0 0.50 0/72/0 0.52 23/46/3 0.50 23/46/3 0.53 9/63/0

GP21 0.50 3/61/8 0.49 3/61/8 0.51 22/46/4 0.49 20/46/6 0.51 9/55/8
GP22 0.50 2/67/3 0.49 0/69/3 0.52 22/47/3 0.50 20/49/3 0.52 5/65/2
GP23 0.52 4/63/5 0.50 0/67/5 0.52 23/45/4 0.50 19/47/6 0.52 5/64/3
GP24 0.51 3/56/13 0.50 3/56/13 0.52 20/50/2 0.50 19/49/4 0.51 6/54/12
GP25 0.48 11/46/15 0.47 8/47/17 0.50 17/37/18 0.48 18/36/18 0.50 12/43/17
GP26 0.52 4/68/0 0.50 0/72/0 0.52 23/46/3 0.50 22/47/3 0.51 5/67/0
GP27 0.51 2/58/12 0.50 2/58/12 0.52 21/51/0 0.50 11/51/10 0.51 6/54/12
GP28 0.52 3/60/9 0.51 3/60/9 0.53 22/50/0 0.51 21/49/2 0.52 8/57/7
GP29 0.51 6/45/21 0.49 5/45/22 0.52 19/41/12 0.50 18/39/15 0.52 11/42/19
GP30 0.50 3/60/9 0.49 1/62/9 0.50 18/46/8 0.49 17/46/9 0.51 4/59/9

only twice among the 30 formulæ. Since we are evolving formulæ rather than programs, GP-trees do not
contain non-reachable nodes. Therefore, it is not clear whether any subcomponents of evolved formulæ can
be definitely labelled as bloats, apart from the explicit, syntactic ones.

The GP-evolved formulæ show strong diversity. There is only one formula that is evolved twice by the GP:
both GP14 and GP24 evolved ef +

√
np. The same subcomponent is found in GP02, GP22, and GP28.

Finally, a similar pattern, (aexf+bn
y
p), where a, b ∈ I, x, y ∈ {12 , 1,

3
2 , 2, 3}, is also frequently observed as in

GP01/09/12/21 (which contain ef +np), GP11/22/25/26 (e2f +
√
np), and GP16/18 (e

3
2
f +np). Interestingly,

both ep + np and
√
ep + np are studied in existing literature [8]. However, GP did not rediscover these

two metrics in their exact forms; rather, GP evolved variations of these formulæ as parts of larger formulæ.
Apart from this, GP did not rediscover any of the existing formulæ.

To answer RQ2, the level of diversity observed in GP-evolved formulæ suggests the possibility that there
may exist risk evaluation formulæ that are different from, but at least as effective as, the existing for-
mulæ designed by the human. The observation made in Section 5.1, i.e., the fact that some GP-evolved
formulæ can outperform existing ones for certain faults, provides further evidence that there may exist
more effective formulæ for various program structures other than ITE2. However, the existence of com-
mon subcomponents suggest that a hybrid design approach may be even more successful: such an approach
would introduce existing formulæ or partially-designed subcomponents into the GP population to assist the
evolution.

RN/12/03 Page 8

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

●
●
●

●

●●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

0 20 40 60 80 100
0

20
40

60
80

10
0

GP08

op
2

3

10

59

●
●

●

●●

●

●

●
●●●●●●●●

●

●
●

●

●

●
●

●

●

●●●
●

●●

●

●●

●
●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

GP11

op
2

0

0

72

●

●

●

●●

●

● ●

●●●●●
●
●

●●

●
●

●

●

●
●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

GP15

ta
ra

nt
ul

a

61

1

10

●●●

●

●

●●
●

●

●
●●●●●●●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

0 20 40 60 80 100
0

20
40

60
80

10
0

GP27

ja
cc

ar
d

19

5

48

Figure 1: Scatterplot comparisons of Expense for faults in evaluation set. Each dot represents a fault: the
x-axis represents Expense produced by GP-evolved formula, and the y-axis by the specified formula. The
solid line represents y = x: dots above the line correspond to faults which GP-evolved formulæ can rank
higher. The upper two plots show that GP can perform equally or better than Op2. The lower left plot
shows that GP can outperform Tarantula for most of the studied faults; the lower right plot shows a mixed
results for GP against Jaccard.

5.3 Insights

Analysis of GP-evolved formulæ in Table 7 suggests that the most significant program spectra element,
with respect to the faults we have studied, is ef , i.e., the number of times a statement has been executed by
failing tests. In all of the 8 GP-evolved formulæ that are equally as effective as Op2 in Table 5, ep is the
element that is either the only component proportional to the risk evaluation value, or the component that
is the most dominant. The discussion of common subcomponent in Section 5.2 suggests that np is perhaps
the second most significant element. Similarly, the least significant element appears to be nf .

These observations do confirm our intuitions about the relationship between program spectra elements and
fault localisation. A statement that contains fault will display a relatively higher ef value (i.e., frequently
covered by failing tests) and a relatively lower np value (i.e., less frequently covered by passing tests). In
fact, human-designed formulæ such as Wong1/2/3 and Op2 are also designed to translate higher ef and
lower np values to higher rankings.

However, there are also some new design insights that can be gained by observing GP-evolved formulæ,
which provide answers to RQ3. Most interestingly, it appears that ratio-type subcomponents (such as the
ratio of a statement being covered by failing tests in Tarantula formula, ef

ef+nf
) are not necessarily required

for a well performing formula: polynomials of spectra elements often seem to be sufficient. Similarly, the
results achieved by polynomials of spectra elements suggests that specific constants, such as those found

RN/12/03 Page 9

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

Table 7: GP-evolved risk evaluation formulæ. Trivial bloats, such as nf − nf , were removed.

ID Refined Formula ID Refined Formula

GP01 ef (np + ef (1 +
√
ef)) GP16

√
e

3
2
f + np

GP02 2(ef +
√
np) +

√
ep GP17 2ef+nf

ef−np
+

np√
ef
− ef − e2f

GP03
√
|e2f −

√
ep| GP18 e3f + 2np

GP04
√
| np

ep−np
− ef | GP19 ef

√
|ep − ef + nf − np|

GP05 (ef+np)
√
ef

(ef+ep)(npnf+
√
ep)(ep+np)

√
|ep−np|

GP20 2(ef +
np

ep+np
)

GP06 efnp GP21
√
ef +

√
ef + np

GP07 2ef (1+ ef +
1

2np
)+ (1+

√
2)
√
np GP22 e2f + ef +

√
np

GP08 e2f (2ep + 2ef + 3np) GP23 √
ef (e

2
f +

np

ef
+
√
np + nf + np)

GP09 ef
√
np

np+np
+ np + ef + e3f GP24 ef +

√
np

GP10
√
|ef − 1

np
| GP25 e2f +

√
np +

√
ef√

|ep−np|
+

np

(ef−np)

GP11 e2f (e
2
f +
√
np) GP26 2e2f +

√
np

GP12
√
ep + ef + np −

√
ep GP27

np

√
(npnf−ef)

ef+npnf

GP13 ef (1 +
1

2ep+ef
) GP28 ef (ef +

√
np + 1)

GP14 ef +
√
np GP29 ef (2e

2
f + ef + np) +

(ef−np)
√
npef

ep−np

GP15 ef +
√
nf +

√
np GP30

√
|ef −

nf−np

ef+nf
|

in Wong3, may not be necessary for designing a well performing formula.

6 Related Work

Various Spectra-Based Fault Localisation techniques have been developed to reduce the cost of debugging.
One of the most widely studied risk evaluation formula, Tarantula, was initially developed as a visualisation
aid for debugging process [1,7]: subsequently, it has been studied independently from the visualisation [2,
16,17]. Other notable formulæ include the family of Wong metrics [9], Statistical Bug Isolation (SBI) [20],
and AMPLE [6]. Recently, Naish et al. provided an optimality proof against a specific program structure
(ITE2: two consecutive If-Then-Else blocks) for their proposed metrics, Op1 and Op2 [8]. Naish
et al. also provides an empirical evaluation of their metrics against a wide range of other formulæ, albeit
using a set of relatively small subject programs. All existing metrics have been designed by human; this
paper present the first GP-based approach to the design of risk evaluation formulæ, reformulating it as a
predictive modelling based on GP.

Although SBFL originally started as a debugging aid for human developers, the technique is increasingly
used to enable other automated Search-Based Software Engineering (SBSE) techniques. Goues et al. use
SBFL to identify the parts of a program that needs to be automatically patched [21]. Yoo et al. use SBFL
to measure the Shannon entropy of fault locality, so that the test suite can be prioritised for faster fault
localisation [22]. GP may be able to help these techniques even further, by evolving SBFL techniques
with a specific set of characteristics, improving the synergy between predictive modelling and SBSE even
further [23].

Other approaches towards fault localisation include slicing [24], consideration of test similarity [25, 26],
delta debugging [12, 13], and causal inference [14]. While this paper only concerns the spectra-based
approach, the positive results suggest that GP may be successfully employed to evolve a wider range of
fault localisation techniques.

RN/12/03 Page 10

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

7 Conclusion

This paper reports the first application of Genetic Programming to evolving risk evaluation formulæ for
Spectra-Based Fault Localisation. We use a simple tree-based GP to evolve risk evaluation formulæ that
take program spectra elements as terminals. Empirical evaluation based on 92 different faults from four
Unix utilities shows three important findings. First, GP-evolved formulæ can outperform widely studied
human-designed formulæ by up to 5.9 times. Second, GP-evolved formulæ can perform optimally against
the ITE2 program structure, for which existing formulæ, Op1 and Op2, have been proven to be optimal.
Finally, GP-evolved formulæ can outperform Op1 and Op2 for certain studied faults.

Future work will include the use of more sophisticated GP representation (so that GP can evolve conditional
formulæ as in Wong3), the inclusion of elements other than program spectra (e.g., code churn, dependency,
or data-flow information), and a wider empirical evaluation.

References

[1] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to assist fault localization,”
in Proceedings of the 24th International Conference on Software Engineering. New York, NY, USA:
ACM, 2002, pp. 467–477.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-localization
technique,” in Proceedings of the 20th International Conference on Automated Software Engineering
(ASE2005). ACM Press, 2005, pp. 273–282.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy of spectrum-based fault local-
ization,” in Proceedings of the Testing: Academic and Industrial Conference Practice and Research
Techniques - MUTATION. IEEE Computer Society, 2007, pp. 89–98.

[4] P. Jaccard, “Étude comparative de la distribution florale dans une portion des Alpes et des Jura,”
Bulletin del la Société Vaudoise des Sciences Naturelles, vol. 37, pp. 547–579, 1901.

[5] A. Ochiai, “Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions,”
Bulletin of the Japanese Society of Scientific Fisheries, vol. 22, no. 9, pp. 526–530, 1957.

[6] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization with ample,” in Proceedings
of the sixth international symposium on Automated analysis-driven debugging, ser. AADEBUG’05.
New York, NY, USA: ACM, 2005, pp. 99–104.

[7] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault localization,” in Proceedings of
ICSE Workshop on Software Visualization, 2001, pp. 71–75.

[8] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based software diagnosis,” ACM
Transactions on Software Engineering Methodology, vol. 20, no. 3, pp. 11:1–11:32, 2011.

[9] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization using code coverage,” in Pro-
ceedings of the 31st Annual International Computer Software and Applications Conference - Volume
01, ser. COMPSAC ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 449–456.

[10] M. Harman and B. F. Jones, “Search based software engineering,” Information and Software Technol-
ogy, vol. 43, no. 14, pp. 833–839, Dec. 2001.

[11] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact.” Empirical Software Engineering, vol. 10, no. 4,
pp. 405–435, 2005.

[12] A. Zeller, “Automated debugging: Are we close?” IEEE Computer, vol. 34, no. 11, pp. 26–31, 2001.

RN/12/03 Page 11

Evolving Human Competitive Spectra-Based Fault Localisation Techniques Shin Yoo

[13] ——, Why Programs Fail: A Guide to Systematic Debugging. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005.

[14] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for statistical fault localization,” in
Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA 2010).
ACM Press, July 2010, pp. 73–84.

[15] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi, “An empirical investigation of program spectra,” in
Proceedings of the ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering (PASTE 1998), ser. PASTE ’98. New York, NY, USA: ACM, 1998, pp. 83–90.

[16] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: fault localization in concurrent programs,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1,
ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 245–254.

[17] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the effects of test-suite reduction on fault
localization,” in Proceedings of the International Conference on Software Engineering (ICSE 2008).
ACM Press, May 2008, pp. 201–210.

[18] M. Renieres and S. Reiss, “Fault localization with nearest neighbor queries,” in Proceedings of the
18th International Conference on Automated Software Engineering, October 2003, pp. 30 – 39.

[19] C. S. Perone, “PyEvolve: http://pyevolve.sourceforge.net.”

[20] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical bug isolation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’05. New York, NY, USA: ACM, 2005, pp. 15–26.

[21] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each,” in Proceedings of the 34th International Conference
on Software Engineering, to appear, 2012.

[22] S. Yoo, M. Harman, and D. Clark, “FLINT: Fault localisation using information theory,” Department
of Computer Science, University College London, Tech. Rep. RN/11/09, March 2011.

[23] M. Harman, “The relationship between search based software engineering and predictive modeling,”
in Proceedings of the 6th International Conference on Predictive Models in Software Engineering.
New York, NY, USA: ACM Press, 2010, pp. 1–13.

[24] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization using execution slices and
dataflow tests,” in Proceedings of IEEE Software Reliability Engineering, 1995, pp. 143–151.

[25] D. Hao, L. Zhang, Y. Pan, H. Mei, and J. Sun, “On similarity-awareness in testing-based fault local-
ization,” Automated Software Engineering, vol. 15, pp. 207–249, June 2008.

[26] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation for effective fault localization,” in
Proceedings of the 19th international symposium on Software testing and analysis, ser. ISSTA ’10.
New York, NY, USA: ACM, 2010, pp. 49–60.

RN/12/03 Page 12

