
Video Game Procedural Content Generation
Through Software Transplantation

Mar Zamorano∗†, Daniel Blasco†, Carlos Cetina‡∗,and Federica Sarro∗
∗University College London, London, UK
†Universidad San Jorge, Zaragoza, Spain

‡Universitat Politècnica de València, Valencia, Spain
maria.lopez.20@ucl.ac.uk, dblasco@usj.es, cetina@upv.es, f.sarro@ucl.ac.uk

Abstract—Software transplantation generates new piece of
software by reusing existing parts from a given piece of software
(i.e., host) to enhance other parts of a same or different software
(i.e., donor). In this paper, we argue that software transplantation
can be used for automatically producing video game content.
We propose the first search-based algorithm for procedural
content transplantation and empirically evaluating it in an
industrial case study in collaboration with the developers of
the commercial video game Kromaia. Specifically, our proposed
approach, dubbed IMHOTEP, enables developers to choose what
video-game content to transplant and where, and automatically
searches for an appropriate solution to integrate the organ into
the host. Such a search is performed by using an evolutionary
algorithm guided by a simulation-based fitness function, which
is novel w.r.t previous transplantation work generally guided by
test-suite compliance.

We empirically evaluate the effectiveness of IMHOTEP to trans-
plant procedural content, specifically non-playable characters, for
the commercial video game Kromaia and benchmarked it against
a state-of-the-art approach in search-based procedural content
generation, as well as a variant of IMHOTEP itself guided by a
test-suite-based fitness function.

Using IMHOTEP, Kromaia developers were able to transplant
129 distinct organs taken from the game’s scenarios into five
different hosts, thus generating a total of 645 new transplanted
non-playable characters for this game. Moreover, we found
that the game content generated by using IMHOTEP was 1.5
times superior to the one obtained by using its test-suite-based
variant, and 2.5 times superior than the one generated by the
state-of-the-art benchmark. Finally, a focus group with game
developers indicated their satisfaction with the content generated
by IMHOTEP and their willingness to use it for game development.

Index Terms—Automated Software Transplantation, Auto-
transplantation, Procedural Content Generation, Search-Based
Software Engineering, Model-Driven Engineering

I. INTRODUCTION

The video games industry grows significantly every year [1].
In 2019, it became the largest entertainment industry in terms of
revenue after surpassing the combined revenues of the movie
and music industries [2]. In 2021, video games generated
revenues of $180.3 billion [3], and in 2022, the estimated
revenues were of $184.4 billion [4]. Overall, the sum of
revenues generated from 2020 to 2022 was almost $43 billion
higher than those originally forecasted.

Video games are complex creations where art and software
go hand in hand during the development process to conform
the final product. Hence, development teams are formed by

different profiles, where the majority are software developers
(24%), but also include game designers (23%), artists (15%), UI
designers (8%), and QA engineers (5%) [5]. In a video game,
software permeates every aspect of the development, since it
governs all the elements and actions that can appear or happen
within the game. For instance, software controls the logic
behind the actions of non-playable characters (NPCs) within
a game (often through state machines or decision trees). As
video games become more and more advanced, their software
also becomes more complex.

To alleviate the complexity of video game development,
most video games are developed using game engines such as
Unity [6] and Unreal [7]. These offer development environ-
ments that integrate a graphics engine and a physics engine,
as well as tools to accelerate development. For example, they
provide a ready-to-use implementation of gravity or collisions
between elements. Game engines significantly speed up the
development of video games. However, for game developers,
the main challenge to develop the game content (e.g., scenarios,
NPCs, items such as weapons) remains.

Content generation is generally a slow, tedious, costly, and
error-prone manual process. To cope with the growing demand
for content for video games, researchers have been working
towards Procedural Content Generation (PCG). PCG refers
to the field of knowledge that aims at the (semi) automatic
generation of new content within video games [8]. Current PCG
approaches work as follows: Developers provide initial content
(usually human-generated) into an algorithm. Afterwards, the
algorithm (which could be a traditional, machine learning, or
search-based PCG method) generates new content. However,
thus far only a few traditional methods have been used to
randomly generate vegetation [9] in Unreal and Unity.

In this paper, we propose a new angle to tackle video games
content generation inspired by transplantation techniques [10],
which we named Procedural Content Transplantation (PCT). In
medicine, transplantation is a procedure in which cells, tissues,
or organs of an individual are replaced by those of another
individual, or the same person [11]. In software, researchers
understand transplantation as a procedure in which a fragment
(organ) of a software element (donor) is transferred into another
software element (host) [10]. Software transplantation has
been successful for different tasks: program repair [12], [13],
testing [14], security [15], and functionality improvements [16].

Our PCT proposal introduces for the first time the transplanta-
tion metaphor for video-games. In our approach, the developers
of a game will select an organ (a fragment of video game
content) from a donor (video game content), and a host (another
video game content) that will receive the organ. The organ and
the host will serve as inputs for a transplantation algorithm
that will generate new content for the game by automatically
combining the organ and the host. Our hypothesis is that our
transplantation approach can release latent content that results
from combining fragments of existing content. Furthermore, our
transplantation approach provides more control to developers
in comparison to current PCG approaches that are solely based
on random generation, leading to results that are closer to
developers’ expectations.

To show the viability of procedural content generation via
transplantation we designed and realised the first ever search-
based transplantation algorithm for video-game procedural
content, dubbed IMHOTEP1, and evaluated its effectiveness in
generating non-playable characters (NPCs) for the commercial
video-game Kromaia. We rely on a search-based algorithm
as the process of transplantation involves connecting the
boundaries of the donor organ with those of the host, and with
multiple potential connection points available from the donor,
the search space created by the combination of boundaries and
host is simply too vast to be thoroughly explored through brute
force methods. Moreover, search-based approaches have been
successfully applied for traditional software transplantation [10].
Moreover, we propose the use of video game simulations
(SImhotep) to guide the search, based on the intuition that it is
possible to harness video games’ NPCs to run simulations that
provide data to asses the transplantation.2

To evaluate our proposal we have carried out an industrial
case study in collaboration with the developers of the com-
mercial video game Kromaia3. Kromaia has been released on
PC, PlayStation, and translated to eight different languages. In
particular, in the Kromaia case study, we were able to assess
the effectiveness of IMHOTEP to transplant 129 different organs
extracted from the scenarios of Kromaia into five of its NPCs
bosses that act as hosts, generating new video game bosses,
for a total of 645 successful transplants. This is higher than
previous work in the literature, which achieved at most 327
successful transplants [17].

We compare the quality of the 645 bosses generated by using
IMHOTEP to the same number of bosses generate by using a
search-based PCG approach from the literature [18], which is
the most relevant state-of-the-art of a comparable nature, and
those generated by a variant of IMHOTEP that uses test-suite as

1Our approach is named after IMHOTEP, who is considered by many to
have written the Edwin Smith Papyrus (the oldest known manual of surgery).

2In fact, within video games, it is typical to find NPCs that serve as
companions to the player, adversaries to defeat, or inhabitants of the virtual
world. These NPCs have pre-programmed behaviours that could be used
in game simulations. For instance, in a first-person shooter game (like the
renowned Doom video game), NPCs explore the game scenarios in search of
weapons and power-ups to engage in combat with other NPCs or the player.

3See the official PlayStation trailer to learn more about Kromaia: https:
//youtu.be/EhsejJBp8Go

objective function (namely, TImhotep), in line with the traditional
software transplantation literature. To perform the comparison,
we rely on the concept of game quality and its automated
measurement, which is widely accepted in practice [19].

The results show that, out of the three approaches, the content
generated through the IMHOTEP obtains the best results: It
yields 1.5x better results than TImhotep and 2.5x better results
than baseline. The statistical analysis shows that the differences
are statistically significant, and the magnitude of improvement
is always large. To the best of our knowledge, this is the
first work that leverages transplantation to generate video
game content, obtaining more favourable solutions than current
SBPCG in an industrial setting. In summary:
• Our results show that procedural content generation

through transplant (i.e. PCT) has significantly outper-
formed classic content generation in the evaluation of
this work, opening a new road towards tackling content
generation.

• Our transplantation approach has produced the highest
number of successful transplants, to date - almost double
than those found in previous work. Moreover, the trans-
plants are carried out in an real-world industrial context
in contrast to the academic context of other work.

• Our work returns control to the hands of the developers
through organ selection. The generated content is more
in line with the intent of developers, as discussed in the
focus group.

• Our work reveals that harnessing simulations rather than
test suites leads to significantly better results. This may
empower software transplantation researchers to reconsider
the usage of test suites in their work.

• Our analysis of the results reveals interactions between
organs that are a promising line of research to advance
the field of software transplants.

For replicability, reproducibility and extension of our work,
we made IMHOTEP’s source code and the data of our study pub-
licly available at https://github.com/SOLAR-group/IMHOTEP.

II. BACKGROUND

A. Video Game Development

Video games are pieces of software that, like any other
software, need to be designed, developed, and maintained
over time. However, there are some particularities of video
games that make them differ from traditional software, such
as the artistic component of the videogame, the complexity
of the rendering pipelines, the heterogeneous nature of video
game development teams, and the abstract nature of the final
purpose of a video game: fun [20], [21]. Hence, video games
present characteristics that differentiate their development and
maintenance from the development and maintenance of classic
software. Examples of these differences can be found in how
video game developers must contribute to the implementation
of different kinds of artifacts (e.g., shaders, meshes, or prefabs)
or in the challenges they face when locating bugs or reusing
code [20], [21]. Today, most video games are developed using

https://youtu.be/EhsejJBp8Go
https://youtu.be/EhsejJBp8Go
https://github.com/SOLAR-group/IMHOTEP

game engines. Game engines are development environments
that integrate a graphics engine and a physics engine as well as
tools for both to accelerate development. The most popular ones
are Unity and Unreal Engine, but it is also possible for a studio
to make its own specific engine (e.g., CryEngine [22]). One key
artefact of game engines are software models. Unreal proposes
its own modeling language (Unreal Blueprints) [23], Unity
proposes Unity Visual Scripting [24], and a recent survey [25]
reveals that UML and Domain Specific Language (DSL) models
are also being adopted by development teams. Developers can
use the software models to create video game content instead
of using the traditional coding approach. While code allows
for more control over the content, software models raise the
abstraction level, thus promoting the use of domain terms and
minimizing implementation and technological details. Through
software models, developers are freed from a significant part
of the implementation details of physics and graphics, and can
focus on the content of the game itself.

B. Kromaia Case Study

In this subsection we give an overview of Kromaia, the
commercial video game used in our industrial case study.

Each level of Kromaia consists of a three-dimensional space
where a player-controlled spaceship has to fly from a starting
point to a target destination, reaching the goal before being
destroyed. The gameplay experience involves exploring floating
structures, avoiding asteroids, and finding items along the route,
while basic enemies try to damage the spaceship by firing
projectiles. If the player manages to reach the destination,
the ultimate antagonist corresponding to that level (which is
referred to as boss) appears and must be defeated in order to
complete the level. Kromaia’s boss is the NPCs target content
that we aim to automatically create via PCT. Bosses can be
built either using C++ code or software models. The top part
of Figure 1 depicts a boss fight scenario where the player-
controlled ship (item A in the figure) is battling the NPC
Serpent (item B in the figure), which is the final boss that must
be defeated in order to complete Level 1. The bottom part of
Figure 1 illustrates the two possible development approaches
for the Serpent boss (model-driven Vs. code-centric).

Developers can mix both technologies by developing differ-
ent parts of the boss using one or the other approach indistinctly,
but they are also free to implement the content using software
models exclusively or to do so purely via code. However,
the heterogeneous nature of video game development teams -
comprised majorly of programmers [5], but also counting game
designers, artists, UI designers, and QA engineers within their
ranks - possibly favours the use of software models over code
thanks to the higher abstraction level of the former (combined
with their detachment from more technical implementation
details) which empowers less tech-focused roles to embrace a
more active participation in development tasks. Also, previous
work [26] showed that video game developers make fewer
mistakes and are more efficient when working with models
rather than code.

S
cr

ee
n
sh

ot
 o

f
K

ro
m

ai
a

Model-Driven Development Code-Centric Development

B

A

Fig. 1: Kromaia: Model-Driven vs. Code-Centric Development

In Kromaia, the elements of the game are created through
software models, and more specifically, through the Shooter
Definition Model Language (SDML). SDML is a DSL model
for the video game domain that defines aspects that are included
in video game entities: the anatomical structure (including
their components, physical properties, and connections); the
amount and distribution of vulnerable parts, weapons, and
defenses; and the movement behaviours associated with the
whole body or its parts. SDML has concepts such as hulls,
links, weak points, weapons, and AI components, and allows
for the development of all types of video game content, such
as bosses, enemies, or environmental elements. The models are
created using SDML and interpreted at run-time to generate the
corresponding game entities. In other words, software models
created using SDML are translated into C++ objects at runtime
using an interpreter integrated into the game engine [27]. More
information on the SDML model can be found on-line at
https://youtu.be/Vp3Zt4qXkoY. The use of software models
makes Kromaia a suitable video game for our study.

III. OUR PROPOSAL: IMHOTEP

This section explains how IMHOTEP makes use of evolution-
ary computation [28] and software models to transplant organs
within video game content in order to create new content
(i.e., Kromaia bosses in our case study). To facilitate the
comprehension, we also provide the reader with an example
of transplantation for a simplified version of a Kromaia ‘boss’

https://youtu.be/Vp3Zt4qXkoY

Fig. 2: Overview of IMHOTEP, our proposal for PCT.

inspired by the ‘Serpent’ boss shown in Figure 1 with letter
B. Given the popularity of software models for video-game
development (see Section II), we designed IMHOTEP to work
with models. Although our running example uses the SDML
models of Kromaia, our approach is generic and can be used
with other modelling languages because it exploits the idea of
boundaries between model elements.

Figure 2 shows an overview of IMHOTEP. On the left
there is the input to our approach, namely the organ to be
transplanted from the donor and the host where the organ will
be transplanted to. Afterwards, IMHOTEP detects the points
of the organ that allows the transplantation and the points
where the organ can be inserted into the host. To initialize the
population of the evolutionary algorithm, the organ is cloned
and transplanted to a random point. Genetic operations generate
potential solutions for transplantation, while the objective
function assesses the quality of these solutions. This process
of generating and assessing is repeated until a specific stop
condition is met. When the evolutionary algorithm finishes the
execution, we obtain a ranked list based on the given objective
function of the best transplants between organ and host. Next,
we describe each step of IMHOTEP.

A. Input selection

IMHOTEP allows the developers to identify a source model
content (donor) with the organ that will be transplanted,
and a target model content (host). In our running example
we present a simplified version of the meta-model, and the
corresponding concrete syntax of the model (see Figure 3
Metamodel) from Kromaia. In such model ‘Hulls’ serve as the
structural framework that define the anatomical composition
of the models. For example, the boss presented in Figure 1
(identified as ‘B’) has its body built by hulls. ‘Weak points’
are conceptual elements that possess the vulnerability to be
harmed. ‘Weapons’ are tangible items capable of causing harm
through direct contact, such as discharging projectiles like
bullets. Hulls, weak points, and weapons are attached between
them through ‘Links’.

In our example, the source donor model is a simplified
version of the original Kromaia ‘boss’ ‘Serpent’. Figure 3
Input Donor shows the graphical representation of the donor’s
model . It also shows with dashed lines the elements selected
as organ. The host is a model of a regular enemy that could
appear in Kromaia. Figure 3 Input Host shows the graphical
representation of the host model.

B. Boundary detection

To transplant an organ into a host we need to find a way to
connect them. To this end we exploit the boundaries between
the model elements of the organ and the host. The study
of boundaries between elements in software models has been
ongoing for over ten years, with the aim of managing variability
within models [29], [30]. A boundary is a connection point
capable of connecting two distinct model elements within
a model. The connection is restricted by the rules of the
metamodel. In the simplified example in Figure 3 Metamodel,
the Source and Target meta-relationships are the boundaries
between the model elements of the models conforming to
that metamodel. In other model languages, there will be other
meta-relationships with other names that will be the boundaries.

IMHOTEP automatically identifies the boundaries of the
selected organ, and all the boundaries of the host. In our running
example, the boundaries of the organ are the connection points
between donor and host. The elements that connect with the
rest of the donor are H, K, and Q. Figure 3 Boundary detection
Donor shows the donor, differentiating each element of the
model with a letter from A to S, and the selected organ (namely,
H, I, J, K, N, O, P, Q) with its boundaries (which are b11
for the H element; b16 for the K element, and b25 for the Q
element). While, the host boundaries are all the points where
its model elements connect. Figure 3 Boundary detection Host
shows all the boundaries of the host of our running example:
The host has a total of 19 boundaries identified by a tag from
ba to bs.

C. Boundary mapping

In the boundary mapping step, IMHOTEP determines a
mapping between the organ and the host boundaries. For each
boundary in the organ, IMHOTEP considers all compatible
boundaries of the host, including the possibility of not con-
necting the boundary to the host boundaries. The boundary
compatibility is determined by the metamodel.

The table on the Figure 3 Boundary mapping shows a
boundary mapping between the organ and the host of the
running example. The boundary b11 is a boundary from a
‘Link’ from the model and according to the metamodel it
can connect to any ‘Hull’, ‘Weapon’, and ‘Weak Point’. The
boundaries b16 and b25 are both ‘Hulls’ and they can connect
with any ‘Link’.

D. Initialize population

In evolutionary algorithms, a population is a collection of
possible solutions for a problem. The encoding is the problem
representation that an algorithm is capable to understand.

In our work, the encoding requires a binary vector that
represents the organ in the donor, and the boundary mapping
(see Figure 3 Encoding). In the binary vector, each element
from the model is a position in the vector. If a position in the
vector has a ‘1’, it means that the element from the model is part
of the organ. On the other hand, each boundary from the organ
gets assigned a compatible boundary from the host. The initial
population of IMHOTEP contains individuals composed by the

Fig. 3: Overview of IMHOTEP on a running example.

host and the organ placed in a random position (i.e. a random
mapping between the organ boundaries and the compatible
organ boundaries).

E. Genetic operators

IMHOTEP uses traditional genetic operators (namely, selec-
tion, crossover, and mutation) to generate new individuals (i.e.
candidate solutions). Specifically, we use the ranking selection,
which ranks the individuals based on the objective function and
retains the top ones in the current population. We use a single,
random, cut-point crossover, which selects two parent solutions
at random, and determines a cut point uniformly at random to
split them into two sub-vectors. Then, the crossover creates
two children solutions by combining the first part of the first
parent with the second part of the second parent for the first
child, and the first part of the second parent with the second
part of the first parent for the second child. Finally, the new
offspring is mutated by changing any value of the encoding
uniformly at random with a certain probability. Figure 3 Output
shows an example of new individuals that could results from
our running example. For simplicity, these individuals have
unaltered organs, but illustrate different boundary mappings
between organ and host.

F. Objective function

Our work proposes to harness video games’ NPCs to run
simulations that provide data to assess the transplants (i.e.
to compute the value of the objective function assessing the
quality of each transplant). Specifically, we propose to use
the content generated via transplantation (each individual in
the population) into a simulation of the video game. Such
a simulation produces a data trace of the events that have
occurred. Using the data from the trace, we can check how
well aligned are the events with the intention of the developers.

In our case study, the simulation is a duel between a spaceship
and a boss. The simulation generates data about the duel, such
as the damage inflicted. The intention of the developers may
be that the duel ends with the victory of the spaceship with a
remaining life of less than 10%. Our proposal does not require
ad hoc development of simulations. In fact the simulations
leverage mainly the NPCs (but also more video game elements,
such as scenarios or items like weapons or powerups),which
are usually developed anyway during for most types of video
games. In other words, NPCs are integral components of most
video game genres such as First-Person Shooter, Real-Time
Strategy, or Racing Games. This use of simulations has two
advantages: it makes the use of simulations cheaper (i.e. it
does not involve additional development costs) and it facilitates
fidelity to the video game compared to ad hoc development.

In our case study, IMHOTEP compute the objective function
value for each individual in the population, through a simulation
of a game battle between the boss generated via transplantation
(i.e. the candidate solution, also referred to as Host’) and
an NPC spaceship4. Since all these elements, as well as the
scenarios and items such as weapons or powerups already
belong to the game itself, no extra development is needed to
run the simulation.

Once a simulation is executed, we need a way to quantify
its quality. One thing that differentiates video games from
traditional software is that the basic requirement of video games
is ‘fun’. ‘Fun’ is an abstract concept and the developers are in
charge of interpreting it when creating a game. In fact, different
developers may have different interpretations, also depending
on the intended users of a given video game. For some, ‘fun’
is achieved with a difficult game that is very rewarding when

4Note that from now we can refer to the simulation-based version of
IMHOTEP as SImhotep, to differentiate it from a more traditional objective
function based on test-suite-compliance (referred as to TImhotepherein).

progress is made (e.g., Dark Souls [31]), while for others,
‘fun’ is achieved by effortlessly killing enemies (e.g., Dynasty
Warriors [32]). Therefore, we argue that such an intent is key
for the evaluation of new generated content. Hence, to evaluate
the quality of the candidate solutions generated by IMHOTEP we
take into account the percentage of simulated player victories
(FVictory) and the percentage of simulated player health left
once the player wins a duel (FHealth), which are commonly
used metrics in the literature. Specifically, we compute FVictory
and FHealth according to Blasco et al. [27], as described below:

FVictory is calculated as the difference between the number
of human player victories (VP) and the optimal number of
victories (33%, according to the developers of Kromaia and
their criteria) (VOptimal):

FVictory = 1− (|VOptimal−VP | /VOptimal) (1)

FHealth, which refers to completed duels that end in spaceship
victories, is the average difference between the spaceship’s
health percentage once the duel is over (ΘP) and the optimal
health level that the spaceship should have at that point
(ΘOptimal , 20%, according to the developers):

FHealth = 1− (
VP

∑
d=1

(|ΘOptimal−ΘP) |/ΘOptimal)/VP (2)

The FVictory and FHealth criteria are combined (i.e. averaged)
in the objective function FOverall which guides the evolutionary
search, as follows:

FOverall = min

(
Validity,

N

∑
i=1

Fi/N

)
(3)

where Validity is a crucial part to take into account the validity
of newly generated models by using a run-time interpreter
which is already part of the game. In fact, such validation
step is needed to discard models with inconsistencies. When
a model is stated as non-valid by the interpreter the value
of Validity will be 0. FOverall value is the minimum between
Validity and the average value of FVictory and FHealth, thus it
can assume a value in [0, 1].

IV. EXPERIMENTAL DESIGN

In this section we explain the design of the experiments
we perform to empirically evaluate IMHOTEP by using the
commercial video game Kromaia. We present the research
questions that we aim to answer, the evaluation method, and
the implementation details.

A. Research Questions

IMHOTEP proposes a new angle for video game procedural
content generation, and for this reason we need to assess how it
compares to the established practice for PCG . This motivates
our first research question:

RQ1: How does SImhotep perform with respect to the current
practice for PCG?

To answer RQ1, we had to identify the most relevant and
close work in the PCG literature. We identify the work by

Gallota et al. [18] as the most representative benchmark for our
study. Indeed, Gallota et al. proposed a hybrid Evolutionary
Algorithm for generating NPCs, which combines an L-system
with a Feasible Infeasible Two Population Evolutionary Algo-
rithm. We choose Gallota et al. as PCG baseline because (1)
it is of the same nature of IMHOTEP (i.e. it uses evolutionary
computation), (2) it is specific for spaceships that can play the
role of bosses which is comparable to the content of our case
study, and (3) it achieves the best state-of-the-art results for
this type of content.

Moreover, since we are the first to propose the use of a
simulation-based objective function to guide the search for
transplantation it is natural to compare it with the established
practice in the software transplantation field, which instead
relies on the use of a test suite to guide the transplantation.
This motivates our second research question:

RQ2: To what extend using a simulation-based objective
function to guide the transplantation is more effective than a
test-based one for IMHOTEP?

To answer RQ2 we empirically compare IMHOTEP guided
by the simulation-based objective function described in Sec-
tion III-F (which we refer to as SImhotep) with a test-based
variant of IMHOTEP (which we refer to as TImhotep). Specifically,
TImhotep uses an objective function based on the number of
test cases that are passed by the transplanted software. The
reason for considering this variant is that in traditional software
transplantation the best results have been achieved by using
the test suite as the objective function. In order, to run TImhotep,
the Kromaia’s developers provided us with a test suite relevant
to the game, consisting of a total of 243 tests selected based
on their domain knowledge. Therefore the value of TImhotep’s
objective function was computed by running each individual
through the 243 tests, recording the number of tests passed and
normalizing this value in a scale of [0, 1]. An individual which
passes the 243 tests will obtain an objective function score of
1, on the contrary if it does not pass any test it will obtain an
objective function score of 0. As in SImhotep, each individual
also needs to constitute a valid boss (i.e., solution), receiving
a score of 0 if it does not represent a valid one according to
the run-time interpreter (see Section III-F).

B. Methodology

Figure 4 provides an overview of the process we followed
to empirically assess IMHOTEP and answer RQs 1 and 2 for
the Kromaia’s case study. The top (white background) part
shows the assets of the game itself (content) and the game
development (test suite) that are used by the approaches. The
middle (grey background) part shows inputs and outputs for
each of the approaches compared herein. The bottom (white
background) part shows the evaluation criteria used to assess
the results.

C. Algorithms’ Settings

As described in Section III, developers need to select host and
donors as input for IMHOTEP. In our empirical study, Kromaia’s
developers identified as hosts five different bosses (i.e., Vermis,

Fig. 4: Overview of the evaluation process.

Teuthus, Argos, Orion, and Maia), which constitute the full
set of original bosses from Kromaia. While, as donors, they
considered all Kromaia’s scenarios and were able to identify
129 organs within them. Each host has more than a thousand
model elements, while donor’s organs have an average of 255
model elements. Then we run IMHOTEPwith the parameters
shown in Table I. We established the stop condition at 2
minutes and 30 seconds, ensuring enough time to obtain suitable
solutions.5 At the end of the evolutionary process, each organ
was successfully transplanted to each boss by IMHOTEP, which
provided the developers with a total of 645 new bosses (5 hosts
* 129 organs) (note we obtain 645 solutions from SImhotep and
645 from TImhotep).

We executed the SBPCG benchmark by using the parameters
presented by the original work and for a total of 129 times
for each one of the 5 different hosts, so to obtain the same
number of generated individuals (i.e. 645).

For all approaches we executed 30 independent runs to
account for random variation [33]. Hence, we performed a total
of 58,050 independent runs (645*3*30) for our experiment.

The implementation uses the Java(TM) SE Runtime Envi-
ronment (JDK 1.8) and Java as the programming language.
All experiments were run using two PCs with the following
specifications: Intel Core i7-8750H, 16GB; and 2x Intel(R)
Xeon(R) CPU X5660, 64GB.

1) Evaluation Measures and Statistical Analysis: To com-
pare the solutions provided by the SBPCG benchmark and
the two variants of IMHOTEP (i.e. SImhotep and TImhotep),
we rely on the concept of game quality and its automated
measurement through simulated players. The results by Browne
et al. demonstrated the validity of this approach, which is now
widely accepted in the research community [19]. Therefore,

5The focus of this paper is not to tune the values to improve the performance
of the approaches when applied to a specific problem, but rather to compare
their performance in terms of solution quality on a level playing field.

TABLE I: IMHOTEP parameter settings

Parameter description Value
Stop Criterion 2m 30s
Population size 100
Number of parents 2
Number of offspring 2
Crossover probability 1
Mutation probability 1/150

we need two ingredients to run our experiment: The simulated
player and the automated measurement.

The simulated player, developed by the developers of Kro-
maia, possesses the ability to mimic human player behaviour.
Our approach incorporates their algorithm, utilizing it to
simulate battles between the generated bosses and the simulated
player. Within these simulations, the simulated player confronts
the boss, strategically targeting and destroying its weak points.
Meanwhile, the boss operates in accordance with its anatomical
structure, behavioural patterns, and attack/defensive dynamics,
aiming to overcome the simulated player. Both entities within
the simulation actively strive to emerge victorious, eschewing
draws or ties, and ensuring a definitive win.

The automated measurement is QDuration which was proven
to achieve good results [19]. The duration of duels between
simulated players and bosses units is expected to be around
a certain optimal value. For the Kromaia case study, through
tests and questionnaires with players, the developers determined
that concentration and engagement for an average boss reach
their peak at approximately 10 minutes (TOptimal), whereas
the maximum accepted time was estimated to be 20 minutes
(2∗TOptimal). Significant deviations from that reference value
are good design-flaw indicators: short games are probably too
easy; and duels that go on a lot longer than expected tend to
make players lose interest. The criterion QDuration is a measure
of the average difference between the duration of each duel
(Td) and the desired, optimal duration (TOptimal):

QDuration = 1−

Duels
∑

d=1

|TOptimal−Td |
TOptimal

No.o f Duels
(4)

Based on the equation above, the higher the QDuration of a
given approach, the better the solutions it produced.

To measure whether there is any statistical significance
difference between the results obtained by the different ap-
proaches we perform the Wilcoxon Ranked-Sum test (a.k.a.
Mann–Whitney U test) [34] setting the confidence limit, α , at
0.05, and applying the Bonferroni correction (α/K, where K
is the number of hypotheses) when multiple hypotheses are
tested. We performed a one-sided test since we are interested
in knowing if our proposed approach, SImhotep, would be
better than the others. In such a case, the one-sided p-value
interpretation would be straightforward. Specifically, for RQ1
we test the following null hypothesis: The distribution of
QDuration values produced by SImhotep is not better than that
produced by the SBPCG benchmark. If the test rejects the Null
Hypothesis, the alternative hypothesis would be accepted: The

distribution of QDuration values produced by SImhotep is better
than that produced by the SBPCG benchmark. Similarly for
RQ2 we test the following null hypothesis: The distribution of
QDuration values produced by SImhotep is not better than that
produced by TImhotep. If the test rejects the Null Hypothesis,
the alternative hypothesis would be accepted: The distribution
of QDuration values produced by SImhotep is better than that
produced by TImhotep.

We consider the effect size to assess whether the statistical
significance has practical significance [35]. We use the Vargha
and Delaney’s Â12 non-parametric effect size measure, as it
is recommended to use a standardised measure when not all
samples are normally distributed [35], as in our case. Â12
measures the probability that an algorithm A yields greater
values for a given performance measure M than another
algorithm B, based on the following equation: Â12 = (R1/m - (m
+ 1)/2)/n, where R1 is the rank sum of the first data group we
are comparing, and m and n are the number of observations in
the first and second data sample, respectively. Values between
(0.44,0.56) represent negligible differences, values between
[0.56,0.64) and (0.36,0.44] represent small differences, values
between [0.64,0.71) and (0.29,0.44] represent medium differ-
ences, values between [0.0,0.29] and [0.71,1.0] represent large
differences.

V. RESULTS

In this section, we present the results obtained by running
IMHOTEP and the SBPCG benchmark on Kromaia. Table IIa
shows the mean values and standard deviations for QDuration
for each IMHOTEP variant and the SBPCG benchmark, while
Figure 5 shows the results in form of boxplots, grouped
per host (i.e., the boss of Kromaia used in our experiment,
namely Argos, Maia, Orion, Teuthus, and Vermis) and overall.
Each boxplot represents the distribution of QDuration values
(obtained as average of 30 independent runs) for each of
the 645 solutions obtained from transplantation IMHOTEP
(SImhotep and TImhotep) and SBPCG. We can observe that both
variants (SImhotep and TImhotep) obtained better results than
the SBPCG benchmark. Specifically, SImhotep yielded the best
results, followed by TImhotep and then SBPCG. The variants
obtained an average value of 44.85% in QDuration, with SImhotep
being the variant that obtained the best results overall (53.31%
in QDuration). TImhotep obtained 36.39% in the overall QDuration,
which also outperformed SBPCG. SBPCG obtained the worst
QDuration. Overall, the results reveal that leveraging simulations
as objective function pays off in the context of PCT, yielding
1.5x better results than the TImhotep and 2.5x better results than
the SBPCG benchmark.

When analysing whether there is statistical significant
differences among the results obtained by SImhotep and Base.
We found that the obtained p-values for QDuration are always
lower than 4.01x10−23 (see Table IIb). This is below the
significance threshold value, so we can comfortably state that
SImhotep provides significant better values for QDuration with
respect to Base. We also observe that all the A12 effect size
values are large (see Table IIb), thus confirming the practical

TABLE II: RQ1-RQ2. (a) Mean value and standard deviation
for QDuration obtained by each approach per boss and overall.
(b) Wilcoxon test and Vargha-Delaney Â12 results obtained
by comparing SImhotep Vs. SBPCG (RQ1) and SImhotep Vs.
TImhotep (RQ2) per boss and overall. Â12: Large – L.

(a) Mean and standard deviation

SImhotep TImhotep SBPCG

Boss Mean ± StDev Mean ± StDe Mean ± StDe

Argos 43.92 ± 9.30 32.17 ± 6.94 20.15 ± 1.86
Maia 43.08 ± 12.09 29.52 ± 9.34 8.43 ± 1.81
Orion 48.86 ± 8.69 31.41 ± 6.83 32.97 ± 0.85
Teuthus 60.78 ± 7.38 46.33 ± 10.54 19.53 ± 1.88
Vermis 69.90 ± 10.52 42.50 ± 12.96 25.48 ± 3.31
Overall 53.31 ± 14.26 36.39 ± 11.72 21.31 ± 8.32

(b) Wilcoxon / Â12

RQ1 RQ2

Boss p−Value / Â12 p−Value / Â12

Argos 3.25x10−23 / 0.99 (L) 1.28x10−18 / 0.85 (L)
Maia 3.25x10−23 / 1.0 (L) 6.64x10−18 / 0.85 (L)
Orion 4.01x10−23 / 0.98 (L) 4.95x10−22 / 0.95 (L)
Teuthus 3.25x10−23 / 1.0 (L) 3.60x10−18 / 0.87 (L)
Vermis 3.25x10−23 / 1.0 (L) 8.86x10−23 / 0.95 (L)
Overall 1.41x10−107 / 0.98 (L) 6.58x10−93 / 0.82 (L)

Fig. 5: Results of IMHOTEP (SImhotep and TImhotep) and the
SBPCG benchmark in terms of QDuration.

magnitude of such a difference. Thus, we conclude that:
Answer to RQ1 SImhotep performance far surpasses SBPCG
with statistically significant difference and large effect size
in all cases, exhibiting a remarkable overall enhancement of
250% over SBPCG.

As for the comparison between SImhotep and TImhotep (RQ2),
we observe that all the p-values achieved when comparing the
QDuration distributions provided by the two IMHOTEP variants
are smaller than the significance threshold, thus indicating that
the difference in solution quality is statistically significant in
favour of SImhotep, and always with a large A12 effect size
(see Table IIb). Therefore, we conclude that: Answer to RQ2
SImhotep provides significantly better results than TImhotep in the
context of automated content generation through transplantation,
with a large effect size in all cases examined. The efficacy of
SImhotep demonstrates a 150% enhancement overall compared
to the outcomes of TImhotep.

VI. DISCUSSION

To begin with, our work revolves around the transplantation
of organs between two very different types of content in
video games: scenarios and bosses. One may wonder why
not transplanting organs between contents of the same type,
such as between bosses. Technically, it should also be a smaller
challenge to transplant organs among the same type of content
due to the similarities and shared structures. However, video
games put the focus on fun, which is many times achieved by
avoiding repetition. Since the number of bosses is usually very
limited in video games, transplanting between bosses could lead
to repetition, hurting fun and creating negative play experiences
for the players. In contrast, scenarios provide an abundant and

promising source of organs that can withstand repetition, since
it is frequent for a relevant portion of a scenario to not be
explored by a player during a game: while players spend most
of the time playing within scenarios, the focus of scenarios on
completing goals combined with their sheer extension renders
them difficult to explore in full. Hence, reusing between bosses
and scenarios is more original and relevant for fun.

Since transplanting an organ to a host contributes to gener-
ating new desirable content, one might consider performing
more than one transplant on the same host to continue creating
novel content. In its current state, our approach allows for only
one organ to be transplanted at a time, but it should be possible
to repeatedly transplant the same organ onto the same host, or
to consider chains of transplants where desirable combinations
of organs can be identified and transplanted in bulk into a host.
However, upon analysing the results, we have detected various
interactions between organs that may help guide an approach
that considered multiple transplants:
Organ dependencies occur when an organ requires for another
organ to be present in the host to work properly. For instance,
a spike weapon must be mounted on a hull belonging to the
body of a boss and cannot appear by itself. In other words, a
spike weapon organ depends on the existence of a hull organ
to be able to be included in the boss.
Organ incompatibilities happen when an organ should not
appear in the host under any circumstances. For instance,
consider attaching a black hole organ to a hull belonging to the
boss. The black hole organ destroys everything it touches,
so it would instantly end the boss without triggering the
end condition for the game, since the battle is considered
as completed only when the player is the one responsible for
ending the boss. This would actively block player progress,
which is undesirable for the game.
Organ synergies are found when the functionality of an organ
benefits from the existence of another organ in the host. For
instance, adding one or more weapons to a hull where a weak
spot is located protects the boss from the player, building a
more interesting challenge.
Organ discordances take place when the functionality of an
organ is hindered by the existence of another organ in the host.
For instance, annexing a hull with a mobile arm to another
hull with a laser may cause the laser beam to be intermittently
blocked, decreasing its attack capabilities.

So far, the literature on software transplantation does not
tackle or even identify interactions between organs. Studying
these organ interactions is a line of work to advance the concept
of transplantation both in video games and in the general
software domain. As part of our evaluation(see Figure 4), we
also carried out an informal focus group where we surveyed two
developers from Entalto [36] and two developers from Kraken
Empire [37]. All of them are seasoned video game developers
who devote most of their working hours to realising the
software behind different commercial games. We asked them
to express anonymously their content preferences, presenting
them with the Kromaia’s new content produced by either
IMHOTEP or by the SBPCG benchmark (note that the source

of the generated content was masked to the developers to
avoid influencing their answer, i.e. they did not how the
content was generated). The results showed an unanimous
preference for IMHOTEP-generated content. Furthermore, they
indicated that they would use it as primary content for the
game rather than secondary.6 Until now, previous PCG work
has generated only results used as secondary content. In that
sense, the possibility of using generated content as primary
content represents an advancement in PCG. Developers justify
this choice by arguing that the content generated by IMHOTEP
aligns better with the vision of the game, whereas the SBPCG-
generated content feels more random in purpose even when
reusing content that was created within the context and vision of
the game by the developers. These results have been confirmed
in a subsequent larger empirical user-study [38] dedicated
to compare content generated via IMHOTEP (more generally
referred to as content reuse) and traditional search-based
procedural content generation. In fact, this study reveled that
developers favour the transplantation approach as they feel that
it enhances the underlying content and yields superior outcomes
compared to PCG [38]. The developers acknowledged content
reuse in form of transplants as a natural progression of the
initial original content, while PCG was unfavorably labeled as
content that lacked the touch of professional developers.

VII. THREATS TO VALIDITY

To tackle possible threats to the validity of our work, we
follow the classification suggested by De Oliveira et al. [39].
Conclusion Validity. To minimize not accounting for random
variation, we run each of the approach (i.e. SImhotep, TImhotepand
SBPCG) 30 times. Also, we make sure to assess the same
number of solutions (i.e. 645 new bosses) for each of the
approaches, so to make the comparison fair. In order to
address the lack of good descriptive statistics, we present the
standard deviation and a box-plot of the results. We also applied
statistical significance tests (Mann-Whitney U) and effect size
measurements (Â12) following accepted guidelines [33]. We
tackled the lack of a meaningful comparison baseline by
comparing IMHOTEP to a recent and most relevant Search-
Based PCG approach as a benchmark, as detailed in Section IV.
Internal Validity. We provide the source code and the artefacts
used in our experiments to allow for reproduction and replica-
tion and avoid the lack of discussion on code instrumentation.
We handled the lack of real problem instances by using a
commercial video game as the case study for our evaluation and
by working closely with its developers in a real-world industrial
setting. Likewise, the problem artefacts (donor, organs and
hosts) were directly obtained from the video game developers
and the documentation itself.
Construct Validity. To prevent the lack of assessing the
validity of cost measures, we made a fair comparison between
the two variants of our approach and the SBPCG benchmark.

6Primary content is that which conforms an essential part of the experience
of the players, while secondary content is that which does not directly affect
the main experience but contributes to creating the atmosphere of the game
(for instance, distant decoration).

Furthermore, we used a metric for the evaluation that has been
widely adopted and validated by the research community [19].
External Validity. To mitigate the lack of generalization threat,
we designed our approach to be generic and applicable not
only to our industrial case study but also for generating content
in other different video games. To apply IMHOTEP to another
case study, it is necessary an encoding for the transplantation
of the content, and leverage the NPCs to obtain the simulation
of the objective function. To avoid the lack of a clear object
selection strategy in our experiment, we have selected the
instances from a commercial video game, which represents
real-world instances. In fact, IMHOTEP can be applied where
NPCs are available. NPCs are usually available in popular
game genres such as car games (rival drivers), FPS games
(bots), or RTS games (rival generals). For those cases were
there is no NPC, the developers should ponder the trade-off of
the cost of developing the NPCs and the benefits of generating
content with our approach. Our approach should be replicated
with other video games before assuring its generalization.

VIII. RELATED WORK

In this section, we discuss work that (1) tackles automated
software transplantation and (2) procedural content generation.
Automated Software Transplantation Miles et al. [40] and
Petke et al. [41] proposed the first approaches to transplanting
software code across different versions of a same program.
This seminal work has inspired follow up research to perform
Automated Software Transplantation between different pro-
grams [10], or even different programming languages [42] and
platforms [43], as summarised below.

Sidiroglou-Douskos et al. [44] proposed a technique that
divides the donor program by specific functionality, each piece
is called a ‘shard’. On the other hand, Maras et al. [45]
proposed a three- step general approach, without implementing
it, which applies feature localization to identify the organ; then
code analysis and adaptation, and finally feature integration.
Wang et al. [46] instead of using feature localization, takes as
inputs the desired type signature of the organ and a natural
language description of its functionality. With that, the approach
called Hunter uses any existing code search engine to search for
a method to transplant in a database of software repositories.
Allamanis et al.’s SMARTPASTE [47] takes the organ and
replace variable names with holes, the approach using a
deep neural network fills the holes. Unlike Allamanis et al.,
Lu et al. [48] introduced program slicing where the host is
provided with a draft of the code with holes, or natural language
comments. Similarly to Wang et al. [46], program slicing looks
into a database of programs to identify a relevant code to the
current transplant task. Barr et al. propose µSCALPEL [10], an
automatic code transplant tool that uses genetic programming
and testing to transplant code from one program to another.
Subsequently, Marginean et al. proposes τSCALPEL [42] to
achieve the transplantation between different programs and
programming languages. To the best of our knowledge our is
the first proposal addressing automated software transplantation
in the field of content generation for video games. Our

proposal allows the transplantation between different types of
content. We have demonstrated that in this context a simulation-
based objective function yield superior outcomes compared
to the test-based objective function that previously attained
the most favourable results in traditional software engineering
transplantation (µSCALPEL [42]).
Procedural Content Generation PCG refers to the automation
or semi-automation of the generation of content in video
games [8]. PCG is a large field including many algorithms [49],
which can be categorised in three main categories [50]:
Traditional methods [51] generating content under a procedure
without evaluation; Machine Learning methods (PCGML) [52],
[53], [54] that train models to generate new content; and Search-
Based methods (SBPCG) [8], [55], [56] that generate content
through a search on a predefined space guided by a meta-
heuristic using one or more objective functions. Our work falls
in the SBPCG category and it generates content of the NPC type.
In the context of NPC generation using SBPCG, Ripamonti
et al. [57] proposed an approach to generate monsters adapted
to players, considering the monster with more death rate the
preferred by the player. Pereira et al. [58] and, later, Viana
et al. [59] seek for generating enemies that meet a difficulty
criteria for an academic game. Blasco et al. [27] focuses on
generating spaceship enemies that are comparable to the ones
manually created by developers. To generate spaceships, Gallota
et al. [18] used a combination of Lindenmayer systems [60]
and evolutionary algorithm. Gallota et al. as well as Blasco
et al. use a commercial video game in their evaluation. Our
work is the first approach that tackles automated software
transplantation if the field of video games. Furthermore, our
proposal allows the transplantation between different types of
content (from scenarios to NPCs).

IX. CONCLUSION AND FUTURE WORK

In this study, we introduced the transplant metaphor in PCG
for the first time. The results of our case study demonstrate
that new content can be successfully generated through
transplantation in an industrial setting. Furthermore, our work
achieves transplantation between different types of content,
which results in expanding the library of organs available. This
can inspire researchers and developers to explore the use of
different types of content to automatically create new content.
In addition, we have presented a novel fitness function to guide
the search for transplants, which obtained better results than
the traditional one. This opens a new opportunity for software
transplantation: Co-evolving transplants and simulations. For
instance, one could evolve the simulations by adding or
removing elements like NPCs, items, and scenarios. A co-
evolutionary approach may enable developers to gain a deeper
understanding of the contexts where the generated content
performs better. Furthermore, co-evolutionary approaches may
empower researchers to tackle the challenge of transplanting
content between different games. Achieving the former would
open the door to a vast and potentially highly original catalog
of organs for transplantation that would contribute to achieving
what developers seek with their video games: fun.

ACKNOWLEDGMENT

This work has been partially supported by MINECO under
the Project VARIATIVA (PID2021-128695OB-100), by the
Gobierno de Aragón (Spain) (Research Group T61 23R), by
the Excellence Network AI4Software (Red2022-134647-T).

REFERENCES

[1] P. Rykała, “The growth of the gaming industry in the context of creative
industries,” Biblioteka Regionalisty, no. 20, pp. 124–136, 2020.

[2] C. Politowski, F. Petrillo, J. E. Montandon, M. T. Valente, and Y.-G.
Guéhéneuc, “Are game engines software frameworks? a three-perspective
study,” Journal of Systems and Software, vol. 171, p. 110846, 2021.

[3] T. Wijman, “The games market and beyond in 2021:
The year in numbers,” https://newzoo.com/resources/blog/
the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming,
2021, accessed: 01/12/23.

[4] ——, “The games market in 2022: The year in numbers,” https://newzoo.
com/resources/blog/the-games-market-in-2022-the-year-in-numbers,
2022, accessed: 01/12/23.

[5] SlashData, “State of the developer nation 23rd edition,” [Online; accessed
18-December-2023]. [Online]. Available: https://slashdata-website-cms.
s3.amazonaws.com/sample reports/dsIe6JlZge KsHWt.pdf

[6] Unity, “Unity,” https://unity.com/, accessed: 01/02/24.
[7] Unreal, “Unreal,” https://www.unrealengine.com/, accessed: 01/02/24.
[8] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural

content generation for games: A survey,” ACM Transactions on Multi-
media Computing, Communications, and Applications (TOMM), vol. 9,
no. 1, pp. 1–22, 2013.

[9] S. Tree, “Speed tree,” https://store.speedtree.com, accessed: 01/02/24.
[10] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated

software transplantation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, 2015, pp. 257–269.

[11] M. Farshbafnadi, S. Razi, and N. Rezaei, “Chapter 7 - transplantation,”
in Clinical Immunology, N. Rezaei, Ed. Academic Press, 2023, pp.
599–674. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128180068000086

[12] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically find-
ing patches using genetic programming,” in 2009 IEEE 31st International
Conference on Software Engineering. IEEE, 2009, pp. 364–374.

[13] S. Sidiroglou-Douskos, E. Lahtinen, and M. Rinard, “Automatic error
elimination by multi-application code transfer,” 2014.

[14] T. Zhang and M. Kim, “Automated transplantation and differential
testing for clones,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 665–676.

[15] W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware detection in
adversarial settings: Exploiting feature evolutions and confusions in
android apps,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017, pp. 288–302.

[16] S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Rinard,
“Codecarboncopy,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 95–105.

[17] B. Reid, C. Treude, and M. Wagner, “Optimising the fit of stack overflow
code snippets into existing code,” in Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, 2020, pp. 1945–1953.

[18] R. Gallotta, K. Arulkumaran, and L. Soros, “Evolving spaceships with
a hybrid l-system constrained optimisation evolutionary algorithm,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2022, pp. 711–714.

[19] C. Browne and F. Maire, “Evolutionary game design,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 2, no. 1, pp. 1–16,
2010.

[20] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is video
game development different from software development in open source?”
in Proceedings of the 15th International Conference on Mining Software
Repositories, 2018, pp. 392–402.

[21] J. Chueca, J. Verón, J. Font, F. Pérez, and C. Cetina, “The consolidation
of game software engineering: A systematic literature review of soft-
ware engineering for industry-scale computer games,” Information and
Software Technology, p. 107330, 2023.

[22] CryEngine, “Cryengine,” https://www.cryengine.com, accessed: 01/02/24.

[23] U. Blueprint, “Unreal blueprint,” https://docs.unrealengine.com/4.27/
en-US/ProgrammingAndScripting/Blueprints/GettingStarted/, accessed:
01/02/24.

[24] U. Scripting, “Unity scripting,” https://unity.com/features/
unity-visual-scripting, accessed: 01/02/24.

[25] M. Zhu and A. I. Wang, “Model-driven game development: A literature
review,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–32,
2019.

[26] Á. Domingo, J. Echeverrı́a, O. Pastor, and C. Cetina, “Evaluating the
benefits of model-driven development: Empirical evaluation paper,” in
Advanced Information Systems Engineering: 32nd International Confer-
ence, CAiSE 2020, Grenoble, France, June 8–12, 2020, Proceedings 32.
Springer, 2020, pp. 353–367.

[27] D. Blasco, J. Font, M. Zamorano, and C. Cetina, “An evolutionary
approach for generating software models: The case of kromaia in game
software engineering,” Journal of Systems and Software, vol. 171, p.
110804, 2021.

[28] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu, Evolutionary
computation. CRC press, 2000.

[29] Ø. Haugen, A. Wasowski, and K. Czarnecki, “Cvl: common variability
language,” in Proceedings of the 16th International Software Product
Line Conference-Volume 2, 2012, pp. 266–267.

[30] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen,
“Adding standardized variability to domain specific languages,” in 2008
12th International Software Product Line Conference. IEEE, 2008, pp.
139–148.

[31] K. MacDonald, “Tough love: On dark souls’ difficulty,” https://
www.eurogamer.net/tough-love-on-dark-souls-difficulty, 2019, accessed:
01/02/24.

[32] Z. Oliver, “Dynasty warriors = dumb fun,” https://theologygaming.com/
dynasty-warriors-dumb-fun/, 2013, accessed: 01/02/24.

[33] A. Arcuri and G. Fraser, “Parameter tuning or default values? an empirical
investigation in search-based software engineering,” Empirical Software
Engineering, vol. 18, pp. 594–623, 2013.

[34] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[35] A. Arcuri and L. C. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,” Softw.
Test. Verification Reliab., vol. 24, no. 3, pp. 219–250, 2014. [Online].
Available: https://doi.org/10.1002/stvr.1486

[36] E. Studios, https://www.entaltostudios.com/, accessed: 01/02/24.
[37] K. Empire, https://www.krakenempire.com/, accessed: 01/02/24.
[38] M. Zamorano, A. Domingo, C. Cetina, and F. Sarro, “Game software

engineering: A controlled experiment comparing automated content gen-
eration techniques,” in Proceedings of the 18th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2024.

[39] M. Barros and A. Neto, “Threats to validity in search-based software
engineering empirical studies,” RelaTe-DIA, vol. 5, 01 2011.

[40] C. Miles, A. Lakhotia, and A. Walenstein, “In situ reuse of logically
extracted functional components,” Journal in Computer Virology, vol. 8,
pp. 73–84, 2012.

[41] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic
improvement and code transplants to specialise a c++ program to a
problem class,” in Genetic Programming: 17th European Conference,
EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected
Papers 17. Springer, 2014, pp. 137–149.

[42] A. Marginean, “Automated software transplantation,” Ph.D. dissertation,
UCL (University College London), 2021.

[43] Y. Kwon, W. Wang, Y. Zheng, X. Zhang, and D. Xu, “Cpr: cross
platform binary code reuse via platform independent trace program,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017, pp. 158–169.

[44] S. Sidiroglou-Douskos, E. Davis, and M. Rinard, “Horizontal code
transfer via program fracture and recombination,” 2015.

[45] J. Maras, M. Štula, and I. Crnković, “Towards specifying pragmatic
software reuse,” in Proceedings of the 2015 European Conference on
Software Architecture Workshops, 2015, pp. 1–4.

[46] Y. Wang, Y. Feng, R. Martins, A. Kaushik, I. Dillig, and S. P. Reiss,
“Hunter: next-generation code reuse for java,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 1028–1032.

[47] M. Allamanis and M. Brockschmidt, “Smartpaste: Learning to adapt
source code,” arXiv preprint arXiv:1705.07867, 2017.

https://newzoo.com/resources/blog/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/resources/blog/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/resources/blog/the-games-market-in-2022-the-year-in-numbers
https://newzoo.com/resources/blog/the-games-market-in-2022-the-year-in-numbers
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/dsIe6JlZge_KsHWt.pdf
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/dsIe6JlZge_KsHWt.pdf
https://unity.com/
https://www.unrealengine.com/
https://store.speedtree.com
https://www.sciencedirect.com/science/article/pii/B9780128180068000086
https://www.sciencedirect.com/science/article/pii/B9780128180068000086
https://www.cryengine.com
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://unity.com/features/unity-visual-scripting
https://unity.com/features/unity-visual-scripting
https://www.eurogamer.net/tough-love-on-dark-souls-difficulty
https://www.eurogamer.net/tough-love-on-dark-souls-difficulty
https://theologygaming.com/dynasty-warriors-dumb-fun/
https://theologygaming.com/dynasty-warriors-dumb-fun/
https://doi.org/10.1002/stvr.1486
https://www.entaltostudios.com/
https://www.krakenempire.com/

[48] Y. Lu, S. Chaudhuri, C. Jermaine, and D. Melski, “Program splicing,”
in Proceedings of the 40th International Conference on Software
Engineering, 2018, pp. 338–349.

[49] G. N. Yannakakis and J. Togelius, Artificial intelligence and games.
Springer, 2018, vol. 2.

[50] N. A. Barriga, “A Short Introduction to Procedural Content Genera-
tion Algorithms for Videogames,” International Journal on Artificial
Intelligence Tools, vol. 28, no. 2, pp. 1–11, 2019.

[51] J. Freiknecht and W. Effelsberg, “A survey on the procedural generation
of virtual worlds,” Multimodal Technologies and Interaction, vol. 1, no. 4,
p. 27, 2017.

[52] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgard, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural Content Generation
via Machine Learning (PCGML),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, 2018.

[53] J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. N. Yannakakis, and
J. Togelius, “Deep learning for procedural content generation,” Neural
Computing and Applications, vol. 33, no. 1, pp. 19–37, 2021.

[54] K. Souchleris, G. K. Sidiropoulos, and G. A. Papakostas, “Reinforcement
learning in game industry—review, prospects and challenges,” Applied
Sciences, vol. 13, no. 4, p. 2443, 2023.

[55] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[56] M. Zamorano, C. Cetina, and F. Sarro, “The quest for content: A survey
of search-based procedural content generation for video games,” arXiv
preprint arXiv:2311.04710, 2023.

[57] L. A. Ripamonti, F. Distefano, M. Trubian, D. Maggiorini, and D. Gadia,
“Dragon: diversity regulated adaptive generator online,” Multimedia Tools
and Applications, vol. 80, no. 26, pp. 34 933–34 969, 2021.

[58] L. T. Pereira, B. M. Viana, and C. F. Toledo, “Procedural enemy
generation through parallel evolutionary algorithm,” in 2021 20th
Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames). IEEE, 2021, pp. 126–135.

[59] B. M. Viana, L. T. Pereira, and C. F. Toledo, “Illuminating the space
of enemies through map-elites,” in 2022 IEEE Conference on Games
(CoG). IEEE, 2022, pp. 17–24.

[60] A. Lindenmayer, “Mathematical models for cellular interactions in
development i. filaments with one-sided inputs,” Journal of theoretical
biology, vol. 18, no. 3, pp. 280–299, 1968.

	Introduction
	Background
	Video Game Development
	Kromaia Case Study

	Our Proposal: Imhotep
	Input selection
	Boundary detection
	Boundary mapping
	Initialize population
	Genetic operators
	Objective function

	Experimental Design
	Research Questions
	Methodology
	Algorithms' Settings
	Evaluation Measures and Statistical Analysis

	Results
	Discussion
	Threats to Validity
	Related work
	Conclusion and Future Work
	References

